Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 12 2017 lúc 8:04

Chọn D

Đặt t = 3 - 2 x 3 ⇒ t 3 = 3 - 2 x ⇔ x = 3 - t 3 2 ⇒ d x = - 3 2 t 2 d t

⇒ I = - 3 2 ∫ 3 - t 3 2 + 1 t . t 2 d t   = - 3 4 ∫ ( 5 t 3 - t 6 ) d t = - 3 4 5 t 4 4 - t 7 7 + C   = 3 4 3 - 2 x 7 3 7 - 5 3 - 2 x 4 3 4 + C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 11 2018 lúc 15:33

Chọn A

Đặt u = x 2 - 2 x + 3 ⇒ d u = 2 ( x - 1 ) d x ⇒ ( x - 1 ) d x = d u 2

⇒ ∫ ( x - 1 ) e x 2 - 2 x + 3 d x = ∫ 1 2 e u d u         = 1 2 e u + C = 1 2 e x 2 - 2 x + 3 + C

Nguyễn Minh Hằng
Xem chi tiết
Nguyễn Trọng Nghĩa
20 tháng 1 2016 lúc 11:03

Biến đổi : 

\(5\sin x=a\left(2\sin x-\cos x+1\right)+b\left(2\cos x+\sin x\right)+c\)

         = \(\left(2a+b\right)\sin x+\left(2b-a\right)\cos x+a+c\)

Đồng nhất hệ số hai tử số : 

\(\begin{cases}2a+b=5\\2b-a=0\\a+c=0\end{cases}\)

\(\Rightarrow\) \(\begin{cases}a=2\\b=1\\c=-2\end{cases}\)

Khi đó :

\(f\left(x\right)=\frac{2\left(2\sin x-\cos x+1\right)+\left(2\cos x+\sin x\right)-2}{2\sin x-\cos x+1}\)

\(2+\frac{2\cos x+\sin x}{2\sin x-\cos x+1}-\frac{2}{2\sin x-\cos x+1}\)

Do vậy : 

\(I=2\int dx+\int\frac{\left(2\cos x+\sin x\right)dx}{2\sin x-\cos x+1}-2\int\frac{dx}{2\sin x-\cos x+1}\)

=\(2x+\ln\left|2\sin x-\cos x+1\right|-2J+C\)

Với 

\(J=\int\frac{dx}{2\sin x-\cos x+1}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 12 2017 lúc 11:51

Chọn C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 1 2020 lúc 2:22

Đáp án B

Phương pháp: Sử dụng công thức  ∫ 1 ( a x + b ) 2 = - 1 a ( a x + b ) + C

Cách giải:  ∫ 1 ( x + 1 ) 2 d x = - 1 x + 1 + C

Crackinh
Xem chi tiết
Nguyễn Việt Lâm
11 tháng 3 2022 lúc 21:32

Từ giả thiết: \(\int f\left(x\right).e^{2x}dx=x.e^x+C\)

Đạo hàm 2 vế:

\(\Rightarrow f\left(x\right).e^{2x}=e^x+x.e^x\)

\(\Rightarrow f\left(x\right)=\dfrac{e^x+x.e^x}{e^{2x}}=\dfrac{x+1}{e^x}\)

Xét \(I=\int f'\left(x\right)e^{2x}dx\)

Đặt \(\left\{{}\begin{matrix}u=e^{2x}\\dv=f'\left(x\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=2.e^{2x}dx\\v=f\left(x\right)\end{matrix}\right.\)

\(\Rightarrow I=f\left(x\right).e^{2x}-2\int f\left(x\right).e^{2x}dx=\left(\dfrac{x+1}{e^x}\right)e^{2x}-2.x.e^x+C\)

\(=\left(1-x\right)e^x+C\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 8 2018 lúc 9:26

Chọn đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 9 2017 lúc 2:48

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 12 2018 lúc 7:39

Chọn B

Thiên An
Xem chi tiết
Nguyễn Minh Hằng
23 tháng 1 2016 lúc 10:59

Biến đổi :

\(4\sin x+3\cos x=A\left(\sin x+2\cos x\right)+B\left(\cos x-2\sin x\right)=\left(A-2B\right)\sin x+\left(2A+B\right)\cos x\)

Đồng nhất hệ số hai tử số, ta có :

\(\begin{cases}A-2B=4\\2A+B=3\end{cases}\)\(\Leftrightarrow\begin{cases}A=2\\B=-1\end{cases}\)

Khi đó \(f\left(x\right)=\frac{2\left(\left(\sin x+2\cos x\right)\right)-\left(\left(\sin x-2\cos x\right)\right)}{\left(\sin x+2\cos x\right)}=2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\)

Do đó, 

\(F\left(x\right)=\int f\left(x\right)dx=\int\left(2-\frac{\cos x-2\sin x}{\sin x+2\cos x}\right)dx=2\int dx-\int\frac{\left(\cos x-2\sin x\right)dx}{\sin x+2\cos x}=2x-\ln\left|\sin x+2\cos x\right|+C\)

Phạm Phương Anh
23 tháng 1 2016 lúc 11:07

oe