Cho hàm số y=f(x), y=g(x) liên tục trên a ; b và số thực k tùy ý. Trong các khẳng định sau, khẳng định nào sai?




Cho hàm số y = f ( x ) có đạo hàm liên tục trên ℝ và có đồ thị hàm số y = f ' ( x ) như hình vẽ. Đặt g ( x ) = f ( x 3 ) . Tìm số điểm cực trị của hàm số y = g ( x )

A. 3
B. 5
C. 4
D. 2
Cho hàm số y= f( x) ) liên tục trên R. Hàm số y= f’ (x) có đồ thị như hình vẽ. Hàm số y = g ( x ) = f ( x ) + 2017 - 2018 x 2017 có bao nhiêu cực trị?

A. 1.
B. 2.
C. 3.
D. 4.

Ta có ![]()
Suy ra đồ thị của hàm số g’ (x) là phép tịnh tiến đồ thị hàm số y= f’ (x) theo phương Oy xuống dưới
đơn vị.
Ta có
và dựa vào đồ thị của hàm số y= f’ (x), ta suy ra đồ thị của hàm số g’ (x) cắt trục hoành tại 4 điểm.
Chọn D.
Cho hàm số y= f(x) xác định và liên tục trên R , có đồ thị của hàm số y= f’(x) như hình vẽ sau.

Đặt g(x) = f(x) + x. Tìm số cực trị của hàm số y= g(x) ?
A. 1.
B. 2.
C. 3.
D. 4.
Chọn B
Ta có g’(x) = f’(x) + 1.
Đồ thị của hàm số y= g’(x) là phép tịnh tiến đồ thị của hàm số y= f’(x) theo phương song song với Oy lên trên 1 đơn vị.
Khi đó đồ thị hàm số y= g’(x) cắt trục hoành tại hai điểm phân biệt.
=> Hàm số y= g(x) có 2 điểm cực trị.
Cho hàm số y = f ( x ) , y = g ( x ) liên tục trên đoạn [ a ; b ] ( a < b ) . Hình phẳng D giới hạn bởi đồ thị hai hàm số y = f ( x ) , y = g ( x ) và hai đường thẳng x = a, x= b có diện tích là
A. S D = ∫ a b f ( x ) − g ( x ) d x .
B. S D = ∫ a b f ( x ) − g ( x ) d x .
C. S D = π ∫ a b f ( x ) − g ( x ) d x .
D. S D = ∫ b a f ( x ) − g ( x ) d x .
Cho hàm số y = f(x) có đạo hàm liên tục trên R và có đồ thị của hàm số y = f’(x) như hình vẽ. Đặt g ( x ) = 3 f ( x ) + x 3 - 3 x 2 . Tìm số điểm cực trị của hàm số y = g(x)

A. 1.
B. 2.
C. 3.
D. 0.
Đáp án B
Ta có
.
.
Hình bên dưới là đồ thị của hàm số
và
.

Dựa vào hình vẽ ta thấy đồ thị hàm số
và
cắt nhau tại 2 điểm phân biệt, đồng thời
khi
hoặc
,
khi
.
Do đó
đổi dấu qua
,
.
Vậy hàm số g(x) có hai điểm cực trị.
Cho hai hàm số y=f(x) và y=g(x) là hai hàm số liên tục trên ℝ có đồ thị hàm số y=f’(x) là đường cong nét đậm, đồ thị hàm số y=g’(x) là đường cong nét mảnh như hình vẽ. Gọi ba giao điểm A, B, C của y=f’(x) và y=g’(x) trên hình vẽ lần lượt có hoành độ là a, b, c. Tìm giá trị nhỏ nhất của hàm số h(x)=f(x)-g(x) trên đoạn [a;c]

A. m i n h x a ; c = h 0
B. m i n h x a ; c = h a
C. m i n h x a ; c = h b
D. m i n h x a ; c = h c
Cho hàm số y = f ( x ) liên tục trên R và có đồ thị hàm số y = f ' ( x ) như hình bên:

Hỏi hàm số g ( x ) = f ( 3 - 2 x ) nghịch biến trên khoảng nào sau đây?
A. (-1;+∞)
B. (-∞;-1)
C. (1;3)
D. (0;2)
Cho hàm số y=f(x) có đạo hàm trên R. Đường cong hình vẽ bên là đồ thị hàm số y=f '(x) (Hàm số y=f '(x) liên tục trên R. Xét hàm số g ( x ) = f ( x 2 - 2 ) . Mệnh đề nào dưới đây là sai?

A. Hàm số y=g(x) đồng biến trên khoảng (-2;-1)
B. Hàm số y=g(x) đồng biến trên khoảng 2 ; + ∞
C. Hàm số y=g(x) nghịch biến trên khoảng (-1;0)
D. Hàm số y=g(x) nghịch biến trên khoảng (0;2)
Cho hàm số y = f(x) có đạo hàm trên R. Đường cong trong hình vẽ bên là đồ thị của hàm số y = f’(x), (y = f’(x) liên tục trên R). Xét hàm số g(x) = f(x2 - 2). Mệnh đề nào dưới đây sai?

A. Hàm số g(x) nghịch biến trên (-∞;-3)
B. Hàm số g(x) có 3 điểm cực trị
C. Hàm số g(x) nghịch biến trên (-1;0)
D. Điểm cực đại của hàm số là 0
Cho hàm số y=f(x) và y=g(x) là hai hàm liên tục trên ℝ có đồ thị hàm số y = f '(x) là đường cong nét đậm và y = g(x) là đường cong nét mảnh như hình vẽ. Gọi ba giao điểm A,B,C của y=f '(x) và y=g'(x) trên hình vẽ lần lượt có hoành độ a.b.c. Tìm giá trị nhỏ nhất của hàm số h(x) = f(x) - g(x) trên đoạn [a;c]?

![]()
![]()
![]()
![]()