Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thùy linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2022 lúc 13:06

1: \(\Leftrightarrow2x^2-10x-3x-2x^2=0\)

=>-13x=0

=>x=0

2: \(\Leftrightarrow5x-2x^2+2x^2-2x=13\)

=>3x=13

=>x=13/3

3: \(\Leftrightarrow4x^4-6x^3-4x^3+6x^3-2x^2=0\)

=>-2x^2=0

=>x=0

4: \(\Leftrightarrow5x^2-5x-5x^2+7x-10x+14=6\)

=>-8x=6-14=-8

=>x=1

2611
16 tháng 12 2022 lúc 13:08

`1)2x(x-5)-(3x+2x^2)=0`

`<=>2x^2-10x-3x-2x^2=0`

`<=>-13x=0`

`<=>x=0`

___________________________________________________

`2)x(5-2x)+2x(x-1)=13`

`<=>5x-2x^2+2x^2-2x=13`

`<=>3x=13<=>x=13/3`

___________________________________________________

`3)2x^3(2x-3)-x^2(4x^2-6x+2)=0`

`<=>4x^4-6x^3-4x^4+6x^3-2x^2=0`

`<=>x=0`

___________________________________________________

`4)5x(x-1)-(x+2)(5x-7)=0`

`<=>5x^2-5x-5x^2+7x-10x+14=0`

`<=>-8x=-14`

`<=>x=7/4`

___________________________________________________

`5)6x^2-(2x-3)(3x+2)=1`

`<=>6x^2-6x^2-4x+9x+6=1`

`<=>5x=-5<=>x=-1`

___________________________________________________

`6)2x(1-x)+5=9-2x^2`

`<=>2x-2x^2+5=9-2x^2`

`<=>2x=4<=>x=2`

Hikaru Akira
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 22:33

a: ta có: \(\dfrac{\left(x+2\right)^2}{2}+\dfrac{\left(2x+1\right)^2}{4}+\dfrac{\left(2x-1\right)^2}{8}-\left(x+1\right)^2=0\)

\(\Leftrightarrow4\left(x^2+4x+4\right)+2\left(4x^2+4x+1\right)+4x^2-4x+1-8\left(x+1\right)^2=0\)

\(\Leftrightarrow4x^2+16x+16+8x^2+8x+2+4x^2-4x+1-8\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow16x^2+20x+19-8x^2-16x-8=0\)

\(\Leftrightarrow8x^2+4x+11=0\)

\(\text{Δ}=4^2-4\cdot8\cdot11=-336< 0\)

Vì Δ<0 nên phương trình vô nghiệm

Akai Haruma
13 tháng 9 2021 lúc 8:54

b.

PT \(\Leftrightarrow \frac{x^2+2x+1}{2}-\frac{4x^2-4x+1}{3}+\frac{4x^2+4x+1}{4}-\frac{x^2-10x+25}{6}=0\)

\(\Leftrightarrow \left(\frac{x^2+2x+1}{2}+\frac{4x^2+4x+1}{4}\right)-\left(\frac{4x^2-4x+1}{3}+\frac{x^2-10x+25}{6}\right)=0\)

\(\Leftrightarrow \frac{6x^2+8x+3}{4}-\frac{9x^2-18x+27}{6}=0\)

\(\Leftrightarrow \frac{3(6x^2+8x+3)-2(9x^2-18x+27)}{12}=0\)

$\Leftrightarrow 5x-\frac{15}{4}=0$

$\Leftrightarrow x=\frac{3}{4}$

 

Akai Haruma
13 tháng 9 2021 lúc 8:56

c.

PT $\Leftrightarrow (x^3+9x^2+27x+27)-(3x^3+12x^2)+(x^3+6x^2+12x+8)=(-x^3+3x^2-3x+1)-8$

$\Leftrightarrow 42x+42=0$

$\Leftrightarrow x=-1$

^($_DUY_$)^
Xem chi tiết
Toru
11 tháng 12 2023 lúc 21:04

\(4(x-3)^2-(2x-1)(2x+1)=10\\\Rightarrow4(x^2-6x+9)-(4x^2-1)=10\\\Rightarrow4x^2-24x+36-4x^2+1=10\\\Rightarrow-24x+37=10\\\Rightarrow-24x=-27\\\Rightarrow x=\dfrac98\)

Nguyễn Linh
Xem chi tiết
Trần Đức Huy
3 tháng 2 2022 lúc 9:01

f. 5 – (x – 6) = 4(3 – 2x)

<=>5-x+6=12-8x

<=>7x=1

<=>x=\(\dfrac{1}{7}\)

g. 7 – (2x + 4) = – (x + 4)

<=>7-2x-4=-x-4

<=>x=7

h. 2x(x+2)\(^2\)−8x\(^2\)=2(x−2)(x\(^2\)+2x+4)

<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x^2+8x-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x=2x^3-16\)

<=>\(8x=-16\)

<=>\(x=-2\)

i. (x−2\(^3\))+(3x−1)(3x+1)=(x+1)\(^3\)

<=>\(x-8+9x^2-1=x^3+3x^2+3x+1\)

<=>\(6x^2-2x-10=0\)

<=>\(3x^2-x-5=0\)

<=>\(\left[{}\begin{matrix}x=\dfrac{1+\sqrt{61}}{6}\\x=\dfrac{1-\sqrt{61}}{6}\end{matrix}\right.\)

k. (x + 1)(2x – 3) = (2x – 1)(x + 5)

<=>\(2x^2-x-3=2x^2+9x-5\)

<=>10x=2

<=>\(x=\dfrac{1}{5}\)

Trần Đức Huy
3 tháng 2 2022 lúc 9:16

f. 5 – (x – 6) = 4(3 – 2x)

<=>5-x+6=12-8x

<=>7x=1

<=>x=\(\dfrac{1}{7}\)

g. 7 – (2x + 4) = – (x + 4)

<=>7-2x-4=-x-4

<=>x=7

h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x^2+8x-8x^2=2x^3-16\)

<=>\(8x=-16\)

<=>x=-2

i.\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)

<=>\(x^3-6x^2+12x+8+9x^2-1=x^3+3x^2+3x+1\)

<=>\(9x+6=0\)

<=>x=\(\dfrac{-2}{3}\)

k. (x + 1)(2x – 3) = (2x – 1)(x + 5)

<=>\(2x^2-x-3=2x^2+9x-5\)

<=>10x=2

<=>

Truong Dung
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 7 2021 lúc 21:46

d.

ĐKXĐ: \(x\left|x\right|-4>0\)

\(\Leftrightarrow x\left|x\right|>4\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>0\\x^2>4\end{matrix}\right.\) \(\Leftrightarrow x>2\)

e.

ĐKXĐ: \(\left|x^2-2x\right|+\left|x-1\right|\ne0\)

Ta có:

\(\left|x^2-2x\right|+\left|x-1\right|=0\Leftrightarrow\left\{{}\begin{matrix}x^2-2x=0\\x-1=0\end{matrix}\right.\) (ko tồn tại x thỏa mãn)

\(\Rightarrow\) Hàm xác định với mọi x hay \(D=R\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 21:49

f.

ĐKXĐ: \(\left\{{}\begin{matrix}x+2\ge0\\x\left|x\right|+4\ne0\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\left|x\right|+4\ne0\end{matrix}\right.\)

Xét \(x\left|x\right|+4=0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x^2+4=0\left(vn\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-x^2+4=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow x=-2\)

Hay \(x\left|x\right|+4\ne0\Leftrightarrow x\ne-2\)

Kết hợp với \(x\ge-2\Rightarrow x>-2\)

Nguyễn Việt Lâm
12 tháng 7 2021 lúc 21:51

g.

ĐKXĐ: \(\left\{{}\begin{matrix}x\ne0\\x\left|x\right|+4\ge0\end{matrix}\right.\)

Xét \(x\left|x\right|+4\ge0\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge0\\x^2+4\ge0\left(luôn-đúng\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\-x^2+4\ge0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\\left\{{}\begin{matrix}x< 0\\-2\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\ge0\\-2\le x< 0\end{matrix}\right.\)

\(\Leftrightarrow x\ge-2\)

Kết hợp \(x\ne0\Rightarrow\left[{}\begin{matrix}-2\le x< 0\\x>0\end{matrix}\right.\)

Hien Tran
Xem chi tiết
Trịnh Lê Anh Vũ
12 tháng 7 2017 lúc 16:36

\(3\left(2x-6\right)-4\left(1+2x\right)-2\left(x-4\right)=4-3\left(1+2x\right)-5\left(1-2x\right).\)

\(\Leftrightarrow6x-18-4-8x-2x+8=4-3-6x-5+10x\)

\(\Leftrightarrow-4x-14=4x-4\)

\(\Leftrightarrow-4x-4x=-4+14\)

\(\Leftrightarrow-8x=10\)

\(\Leftrightarrow x=-\frac{5}{4}\)

Hien Tran
Xem chi tiết
Vũ Tú Anh
9 tháng 7 2017 lúc 11:54

3.2x - 3.6 - 4+4.2x - 2x-2.(-4) = 4 - 3+3.2x - 5-5.(-2x)

              6x -18 -4 +8x -2x +8 = 4 -3 +6x -5 +10x

                6x +8x -2x -18-4+8 = 4-3-5+6x+10x

                                   12x-22 = -4+16x

                                 12x-16x = -4+22

                                         -4x = 18

                                             x = 18: (-4)

                                             x = -4,5

Mình không chắc là đúng đâu đấy, tại giải vội quá, nếu sai thì ming bạn thông cảm ^.^

Nguyễn Quang Linh
Xem chi tiết
Minh Triều
27 tháng 7 2015 lúc 8:34

(x-3)(-2x+5)-2x(x-4)+(x-3)=(x-2)(x-1)-(x2-5x)

<=>-2x2+11x-15-2x2+8x+x-3=x2-3x+2-x2+5x

<=>-4x2+20x-18=2x+2

<=>-4x2+20x-18-2x-2=0

<=>-4x2+18x-20=0

<=>-4x2+8x+10x-20=0

<=>-4x.(x-2)+10.(x-2)=0

<=>(x-2)(-4x+10)=0

<=>x-2=0 hoặc -4x+10=0

<=>x=2 hoặc x=5/2

Hoài An
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 4 2021 lúc 19:17

1) Ta có: \(\left(3-x^2\right)+6-2x=0\)

\(\Leftrightarrow3-x^2+6-2x=0\)

\(\Leftrightarrow-x^2-2x+9=0\)

\(\Leftrightarrow x^2+2x-9=0\)

\(\Leftrightarrow x^2+2x+1=10\)

\(\Leftrightarrow\left(x+1\right)^2=10\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=\sqrt{10}\\x+1=-\sqrt{10}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{10}-1\\x=-\sqrt{10}-1\end{matrix}\right.\)

Vậy: \(S=\left\{\sqrt{10}-1;-\sqrt{10}-1\right\}\)

Nguyễn Lê Phước Thịnh
29 tháng 4 2021 lúc 19:18

2) Ta có: \(5\left(2x-1\right)+7=4\left(2-x\right)+2\)

\(\Leftrightarrow10x-5+7=8-4x+2\)

\(\Leftrightarrow10x+4x=8+2+5-7\)

\(\Leftrightarrow14x=8\)

\(\Leftrightarrow x=\dfrac{4}{7}\)

Vậy: \(S=\left\{\dfrac{4}{7}\right\}\)

Nguyễn Lê Phước Thịnh
29 tháng 4 2021 lúc 19:19

3) Ta có: \(x^2-6x+4\left(x-6\right)=0\)

\(\Leftrightarrow x\left(x-6\right)+4\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-4\end{matrix}\right.\)

Vậy: S={6;-4}

Nhi huỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 8 2021 lúc 0:17

d: Ta có: \(4x\left(2x+3\right)-8x\left(x+4\right)\)

\(=8x^2+12x-8x^2-32x\)

=-20x

e: Ta có: \(2x\left(5x+2\right)+\left(2x-3\right)\left(3x-1\right)\)

\(=10x^2+4x+6x^2-2x-9x+3\)

\(=16x^2-7x+3\)

f: Ta có: \(x\left(x+2\right)^2-\left(x+1\right)^3+3\left(x-1\right)\left(x+1\right)\)

\(=x^3+4x^2+4x-x^3-3x^2-3x-1+3x^2-3\)

\(=4x^2+x-4\)