Cho y = m − 3 x 3 + 2 m 2 − m − 1 x 2 + m + 4 x − 1 . Gọi S là tập tất cả các giá trị nguyên của m để đồ thị hàm số đã cho có hai điểm cực trị nằm về hai phía của trục Oy. S có mấy phần tử?
A. 4
B. 5
C. 6
D. 7
1. Cho x2 +y2 =1. Tìm min A= (3-x) (3-y).
2. cho x,y >0, 2xy-4= x+y. Tìm min P=xy+ 1/ x2 +1/ y^2.
3.Cho x>=3, y>= 3. Tìm min A= 21*(x+1/y) +3*(y+1/x).
4. Cho x,y >0, x^2+ y^2= 1.Tìm min x+y+1/x+1/y.
5. Cho a,b>0, a+b+3ab=1. Tìm min A= 6ab/ (a+b) -a^2-b^2
a) Cho x+y=2 và x^2+y^2=10. Tính x^3+y^3
b) Cho x-y=m; x^2+y^2=n. Tính x^3-y^3 theo m và n
a) \(\left(x+y\right)^2=x^2+y^2+2xy\Rightarrow4=10+2xy\Leftrightarrow xy=-3\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=2^3+3.3.2=26\)
b) \(\left(x-y\right)^2=x^2+y^2-2xy\Rightarrow m^2=n-2xy\Leftrightarrow xy=\frac{n-m^2}{2}\)
\(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=m^3+3.m.\frac{n-m^2}{2}=\frac{3mn}{2}-\frac{m^3}{2}\)
\(|^{x+my=m^2-m+3}_{mx+y=2m-3}\) tìm m để hệ phương trình đã cho có nghiệm duy nhất (x;y)sao cho x+y=3
=>y=2m-3-mx và \(x+m\left(2m-3-mx\right)=m^2-m+3\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m^2-3m-m^2x+x=m^2-m+3\\y=2m-3-mx\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(1-m^2\right)=m^2-m+3-2m^2+3m=-m^2+2m+3\\y=2m-3-mx\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(m-1\right)\left(m+1\right)=\left(m-3\right)\left(m+1\right)\\y=2m-3-mx\end{matrix}\right.\)
Để phương trình có nghiệm duy nhất thì m<>1; m<>-1
=>\(\left\{{}\begin{matrix}x=\dfrac{m-3}{m-1}\\y=2m-3-\dfrac{m\left(m-3\right)}{m-1}=\dfrac{2m^2-5m+3-m^2+3m}{m-1}=\dfrac{m^2-2m+3}{m-1}\end{matrix}\right.\)
x+y=3
=>\(m^2-2m+3+m-3=3\left(m-1\right)\)
=>m^2-m-3m+3=0
=>m^2-4m+3=0
=>m=1(loại) hoặc m=3(nhận)
bài 1: cho hàm số y = 2x3 - 3(2m+1)x2 + 6m(m+1)x + 1. Chứng minh rằng y' = 0 luôn có hai nghiệm phân biệt với x2 - x1 không phụ thuộc vào m.
bài 2: cho hàm số y = [(m-1)x3]/3 + mx2 + (3m-2)x. tìm m để y' ≥ 0 với mọi x thuộc R
bài 3: cho hàm số y = [x2 + (m-1)x + 2 ]/(x-1). tìm m để y' = 0 có hai nghiệm thỏa mãn x1.x2 = -3
bài 4: cho hàm số y = (x2+ mx - 1)/(x-1) tìm m để y' ≥ 0 với mọi x ≠ 1.
bài 5: cho hàm số y = mx3 + 3mx2 - (m-1)x - 1. tìm m để y' = 0 không có hai nghiệm phân biệt.
Cho đa thức \(P = 3{x^2}y - 2x{y^2} - 4xy + 2\).
a) Tìm đa thức \(Q\) sao cho \(Q - P = - 2{x^3}y + 7{x^2}y + 3xy\)
b) Tìm đa thức \(M\) sao cho \(P + M = 3{x^2}{y^2} - 5{x^2}y + 8xy\)
\(a,Q=\left(-2x^3y+7x^2y+3xy\right)+P=\left(-2x^3y+7x^2y+3xy\right)+\left(3x^2y-2xy^2-4xy+2\right)\\ =-2x^3y+7x^2y+3xy+3x^2y-3xy^2-4xy+2\\ =-2x^3y^2+10x^2y-3xy^2-xy+2\)
\(b,M=\left(3x^2y^2-5x^2y+8xy\right)-P\\ =\left(3x^2y^2-5x^2y+8xy\right)-\left(3x^2y-2xy^2-4xy+2\right)\\ =3x^2y^2-5x^2y+8xy-3x^2y^2+2xy^2+4xy-2\\ =-3x^2y+12xy-2\)
Tìm x, y thuộc z |x-5|+|1-x|=12/y+1+3 |x|+|y|<3 2 Tìm GTLN của A= 2012/|x|+2013 B=10/|X|+10. Cho 2x + y=3. Tìm GTNN của D=|2x+3|+|y-2|+2
Cho x^3+y^3+3(x^2+y^2)+4(x+y)=0 và xy>0. Tìm GTNN của M= 1/x+1/y
https://hoc24.vn/hoi-dap/question/486195.html
1) Trong mặt phẳng tọa độ Oxy cho 3 đường thắng (4,): y =x + 2, (4, ): y = 2x+1, (4,): y =(m² + 2)x-2m +1 Tim m để ba đường thắng trên đồng quy.
2) Cho phương trình: x-2(2m +3)x+ 4n+ 3=0 a) Giải phương trinh khi m-3 b) Tim m để phương trình có hai nghiệm phân biết Khi đó, Xét đấu của hai nghiệm
Cho ba đa thức:
\(M = 3{x^3} - 4{x^2}y + 3x - y;N = 5xy - 3x + 2;P = 3{x^3} + 2{x^2}y + 7x - 1.\)
Tính M+N-P và M-N-P.
\(\begin{array}{l}M + N - P = 3{x^3} - 4{x^2}y + 3x - y + 5xy - 3x + 2 - \left( {3{x^3} + 2{x^2}y + 7x - 1} \right)\\ = 3{x^3} - 4{x^2}y + 3x - y + 5xy - 3x + 2 - 3{x^3} - 2{x^2}y - 7x + 1\\ = \left( {3{x^3} - 3{x^3}} \right) + \left( { - 4{x^2}y - 2{x^2}y} \right) + 5xy + \left( {3x - 3x - 7x} \right) - y + \left( {2 + 1} \right)\\ = - 6{x^2}y + 5xy - 7x - y + 3\\M - N - P = 3{x^3} - 4{x^2}y + 3x - y - \left( {5xy - 3x + 2} \right) - \left( {3{x^3} + 2{x^2}y + 7x - 1} \right)\\ = 3{x^3} - 4{x^2}y + 3x - y - 5xy + 3x - 2 - 3{x^3} - 2{x^2}y - 7x + 1\\ = \left( {3{x^3} - 3{x^3}} \right) + \left( { - 4{x^2}y - 2{x^2}y} \right) - 5xy + \left( {3x + 3x - 7x} \right) - y + \left( { - 2 + 1} \right)\\ = - 6{x^2}y - 5xy - x - y - 1\end{array}\)
cho x^2+y^2+z^2=8 Tìm giá trị lớn nhất của biểu thức M = |x^3 – y^3| + |y^3 – z^3| + |z^3 – x^3|