Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 10 2019 lúc 18:19

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 7 2019 lúc 14:21

Đáp án D

Quang Đẹp Trai
Xem chi tiết
Lê Song Phương
4 tháng 6 2023 lúc 7:59

Ta có \(27=xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}\) \(\Leftrightarrow9\ge\sqrt[3]{\left(xyz\right)^2}\) \(\Leftrightarrow729\ge\left(xyz\right)^2\) \(\Leftrightarrow27\ge xyz\) \(\Leftrightarrow27\left(xyz\right)^2\ge\left(xyz\right)^3\) \(\Leftrightarrow\sqrt{3}\sqrt[3]{xyz}\ge\sqrt{xyz}\) (lấy căn bậc 6 2 vế) \(\Leftrightarrow3\sqrt[3]{xyz}\ge\sqrt{3xyz}\)

Do đó \(x+y+z\ge3\sqrt[3]{xyz}\ge\sqrt{3xyz}\). ĐTXR \(\Leftrightarrow x=y=z=3\) 

tinmi123
Xem chi tiết
Akai Haruma
31 tháng 3 2019 lúc 23:14

Bài 1:

Sửa đề: CMR \(x^3+y^3\ge x^2y+xy^2\)

Xét hiệu:

\(x^3+y^3-(x^2y+xy^2)=(x^3-x^2y)-(xy^2-y^3)\)

\(=x^2(x-y)-y^2(x-y)\)

\(=(x^2-y^2)(x-y)=(x+y)(x-y)(x-y)=(x+y)(x-y)^2\)

\(x+y\geq 0, (x-y)^2\geq 0\) với mọi $x,y$ không âm

\(\Rightarrow x^3+y^3-(x^2y+xy^2)=(x-y)^2(x+y)\geq 0\)

\(\Leftrightarrow x^3+y^3\geq x^2y+xy^2\)

Ta có đpcm.

Akai Haruma
31 tháng 3 2019 lúc 23:16

Bài 2:
$111(x-2)$ không nhỏ hơn $1998$, nghĩa là:

\(111(x-2)\geq 1998\)

\(\Leftrightarrow x-2\geq \frac{1998}{111}=18\)

\(\Leftrightarrow x\geq 20\)

Vậy với mọi giá trị $x\in\mathbb{R}$, $x\geq 20$ thì ta có điều cần thỏa mãn.

Akai Haruma
31 tháng 3 2019 lúc 23:18

Bài 3:

\(\frac{a-b}{b}=\frac{a-2b+b}{b}=\frac{a-2b}{b}+\frac{b}{b}=\frac{a-2b}{b}+1\)

\(a,b>0; a>2b\Rightarrow a-2b>0; b>0\Rightarrow \frac{a-2b}{b}>0\)

Do đó:

\(\frac{a-b}{b}=\frac{a-2b}{b}+1>1\)

Ta có đpcm.

Lung Thị Linh
Xem chi tiết
Trần Hoàng Việt
5 tháng 11 2017 lúc 10:57

a) 9x2 - 36

=(3x)2-62

=(3x-6)(3x+6)

=4(x-3)(x+3)

b) 2x3y-4x2y2+2xy3

=2xy(x2-2xy+y2)

=2xy(x-y)2

c) ab - b2-a+b

=ab-a-b2+b

=(ab-a)-(b2-b)

=a(b-1)-b(b-1)

=(b-1)(a-b)

P/s đùng để ý đến câu trả lời của mình

Nguyễn Quốc Việt
Xem chi tiết
Kou Genmei
Xem chi tiết
LÂM 29
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 3 2022 lúc 22:08

1.

\(\left(x+y\right)^2=\left(\dfrac{1}{2}.2x+\dfrac{1}{3}.3y\right)^2\le\left(\dfrac{1}{4}+\dfrac{1}{9}\right)\left(4x^2+9y^2\right)=\dfrac{169}{36}\)

\(\Rightarrow-\dfrac{13}{6}\le x+y\le\dfrac{13}{6}\)

Dấu "=" lần lượt xảy ra tại \(\left(-\dfrac{3}{2};-\dfrac{2}{3}\right)\) và \(\left(\dfrac{3}{2};\dfrac{2}{3}\right)\)

2.

\(\left(y-2x\right)^2=\left(\dfrac{1}{4}.4y+\left(-\dfrac{1}{3}\right).6x\right)^2\le\left(\dfrac{1}{16}+\dfrac{1}{9}\right)\left(16y^2+36x^2\right)=\dfrac{25}{16}\)

\(\Rightarrow\left|y-2x\right|\le\dfrac{5}{4}\)

Dấu "=" xảy ra khi \(\left(x;y\right)=\left(\mp\dfrac{2}{5};\pm\dfrac{9}{20}\right)\)

Nguyễn Việt Lâm
26 tháng 3 2022 lúc 22:12

3.

\(B^2=\left(6.\sqrt{x-1}+8\sqrt{3-x}\right)^2\le\left(6^2+8^2\right)\left(x-1+3-x\right)=200\)

\(\Rightarrow B\le2\sqrt{10}\)

Dấu "=" xảy ra khi \(\dfrac{\sqrt{x-1}}{6}=\dfrac{\sqrt{3-x}}{8}\Leftrightarrow x=\dfrac{43}{25}\)

\(B=6\sqrt{x-1}+6\sqrt{3-x}+2\sqrt{3-x}\ge6\sqrt{x-1}+6\sqrt{3-x}\)

\(B\ge6\left(\sqrt{x-1}+\sqrt{3-x}\right)\ge6\sqrt{x-1+3-x}=6\sqrt{2}\)

\(B_{min}=6\sqrt{2}\) khi \(\sqrt{3-x}=0\Rightarrow x=3\)

4.

\(49=\left(3a+4b\right)^2=\left(\sqrt{3}.\sqrt{3}a+2.2b\right)^2\le\left(3+4\right)\left(3a^2+4b^2\right)\)

\(\Rightarrow3a^2+4b^2\ge\dfrac{49}{7}=7\)

Dấu "=" xảy ra khi \(a=b=1\)

Nguyễn Việt Lâm
26 tháng 3 2022 lúc 22:15

5.

\(\left(y-2x\right)^2=\left(\dfrac{1}{4}.4y-\dfrac{1}{3}.6x\right)^2\le\left(\dfrac{1}{16}+\dfrac{1}{9}\right)\left(16y^2+36x^2\right)=\dfrac{25}{16}\)

\(\Rightarrow-\dfrac{5}{4}\le y-2x\le\dfrac{5}{4}\)

\(\Rightarrow-\dfrac{5}{4}+5\le y-2x+5\le\dfrac{5}{4}+5\)

\(\Rightarrow\dfrac{15}{4}\le y-2x+5\le\dfrac{25}{4}\)

\(C_{min}=\dfrac{15}{4}\) khi \(\left(x;y\right)=\left(\dfrac{2}{5};-\dfrac{9}{20}\right)\)

\(C_{max}=\dfrac{25}{4}\) khi \(\left(x;y\right)=\left(-\dfrac{2}{5};\dfrac{9}{20}\right)\)

Lần sau lưu ý đăng câu hỏi 1 lần thôi, em đăng nhiều lần lặp lại sẽ bị xóa + ko ai giải cho đâu

le diep
Xem chi tiết
Eren
2 tháng 6 2018 lúc 21:54

a = 1