Cho Parabol P : y = x 2 và hai điểm A, B thuộc P sao cho A B = 2 . Diện tích hình phẳng giới hạn bởi P và đường thẳng AB đạt giá trị lớn nhất bằng bao nhiêu?
A. 4 3
B. 5 3
C. 2 3
D. 5 4
Trên mặt phẳng tọa độ Oxy, cho parabol (P): y = -3x23x2 và hai điểm A(-1;-3), B(2;3)
a) Chứng tỏ rằng điểm A thuộc parabol (P).
b) Tìm tọa độ điểm C (C khác A) thuộc parabol (P) sao cho ba điểm A, B, C thẳng hàng.
Cho parabol (P): y =\(\dfrac{1}{2}x^2\)
a) Hai điểm A,B thuộc (P) có hoành độ lần lượt là 2;-1. Tìm tọa độ điểm A,B.
b) Viết phương trình đường thẳng đi qua hai điểm A và B
a, - Thay tọa độ hai điểm xA, xB vào (P) ta được : \(\left\{{}\begin{matrix}y_A=2\\y_B=\dfrac{1}{2}\end{matrix}\right.\)
=> Tọa độ 2 điểm A, B lần lượt là : \(\left(2;2\right),\left(-1;\dfrac{1}{2}\right)\) .
b, - Gọi phương trình đường thẳng AB có dạng : y = ax + b .
- Thay tọa độ A, B vào phương trình ta được hệ : \(\left\{{}\begin{matrix}2a+b=2\\-a+b=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=1\end{matrix}\right.\)
- Thay lại a, b vào phương trình ta được : \(y=\dfrac{1}{2}x+1\)
Vậy ...
Trong mặt phẳng tọa độ Oxy, cho parabol (p) : y=\(-\dfrac{x^2}{2}\)và đường thẳng (d): y=x+m
a) Tìm tọa độ điểm M thuộc parabol (P) biết điểm M có tung độ bằng -2
b,Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm A\(\left(x_1,M_1\right)\),B\(\left(x_2,y_2\right)\)
phân biệt thỏa mãn \(x_1x_2+x_1+x_2=10\)
giúp mk câu này với ạ
Trong mặt phẳng tọa độ Oxy , cho parabol (P) : y= -1/2 x^2
a) Vẽ parabol (P)
b) Gọi M là điểm thuộc (P) có hoành độ xM = 2 . Viết pt đường thẳng đi qua M và cắt hai trục tọa độ tại 2 điểm A và B sao cho OA =OB
Cho parabol (P): y=x2 và đường thẳng d: y=2x−3+m2(x là ẩn, m là tham số) a) Xác định m để đường thẳng d cắt parabol (P) tại hai điểm phân biệt A và B. b) Gọi y1 và y2 lần lượt là tung độ của hai điểm A và B trên mặt phẳng tọa độ Oxy. Tìm m sao cho y1-y2=8
Cho Parabol \(y=x^2\) . Tìm điểm A thuộc parabol sao cho tiếp tuyến với parabol tại A song song với đường thẳng y = 4x + 5
Gọi phương trình tiếp tuyến d tại A của parabol có dạng \(y=4x+b\) (\(b\ne5\))
Pt hoành độ giao điểm d và (P):
\(x^2=4x+b\Leftrightarrow x^2-4x-b=0\) (1)
d tiếp xúc (P) \(\Leftrightarrow\) (1) có nghiệm kép
\(\Leftrightarrow\Delta'=4+b=0\Rightarrow b=-4\)
Hoành độ giao điểm: \(x=\frac{4}{2.1}=2\Rightarrow y=4\Rightarrow A\left(2;4\right)\)
Cho đường thẳng y = x2. Tìm điểm A thuộc parabol sao cho tiếp tuyến với parabol tại A song song với đường thẳng y = 4x+5
Cho parabol (P): y = -x^2 và đường thẳng (d): y = mx + 2
a)tìm m để (d) cắt (P) tại 1 điểm duy nhất
b)Cho 2 điểm A(-2,m) và B(1,m).Tìm m,n để A thuộc (P) và B thuộc (d)
a: Phương trình hoành độ giao điểm là:
\(-x^2-mx-2=0\)
\(\Leftrightarrow x^2+mx+2=0\)
\(\Delta=m^2-8\)
Để (P) cắt (d) tại 1 điểm duy nhất thì Δ=0
hay \(m\in\left\{2\sqrt{2};-2\sqrt{2}\right\}\)
b: Thay x=-2 vào (P), ta được:
\(y=-\left(-2\right)^2=-4\)
hay m=-4