cho a/c=(a-b)/(b-c) chung minh 1/a+1/(a-b)=1/(b-c)-1/c
cho 1<a<b+c<a+1 va b<c chung minh b<a
cho 2/a=1/b+1/c(a,b,c khac 0,a khac c).Chung minh rang b/c=b-a/a-c
cho a,b, c > hoac = 0 va a+b+c=1.chung minh
\(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}>3.5\)
2 cho a,b,c >0 . chung minh
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}>hoac=3\)
2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)
Dấu "=" xảy ra <=> a = b = c
cho a,b,c la cac so duong thoa man (1/a+1/b+1/c)>=(a+b+c), chung minh a+b+c>=3abc
cho a,b,c la cac so duong thoa man (1/a+1/b+1/c)>=(a+b+c), chung minh a+b+c>=3abc
https://www.facebook.com/OnThiDaiHocKhoiA/posts/508217699295984
cho a>o,b>0,c>o va a+b+c=1
chung minh: (1+a)(1+b)(1+c)>=8(1-a)(1-b)(1-c)
cho a+b+c=1 va 1/a+1/b+1/c=0.Chung minh rang : a^2+b^2+c^2=0
Cho a b c la cac so thuc. A+b+c=1 va 1/a+1/b+1/c=0. Chung minh A mu 2+ b mu 2+c mu 2=1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\frac{ab+bc+ca}{abc}=0\Leftrightarrow ab+bc+ca=0\)
\(\left(a+b+c\right)^2=1\Leftrightarrow a^2+b^2+c^2+2.\left(ab+bc+ca\right)=1\)
\(\Leftrightarrow a^2+b^2+c^2+2.0=1\)
\(\Leftrightarrow a^2+b^2+c^2=1\)
cho a+b+c=1 chung minh 1/a+1/b+1/c >=9
áp dụng BĐT CAUCHY-SCHWARZ dưới dạng engel ta đc
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{\left(1+1+1\right)^2}{a+b+c}\)
<=>\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{1}\)(vì a+b+c =1)
<=>\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\) (đpcm)