Tìm điều kiện xác định và rút gọn biểu thức: A = x + 4 x - 4 + x - 4 x - 4
Cho biểu thức A = 4/(x - 4) + 3/(x + 4) * (6x)/(x ^ 2 - 16) a) Tìm điều kiện để giá trị biểu thức A xác định. b) Rút gọn A
a,ĐKXĐ:\(\left\{{}\begin{matrix}x-4\ne0\\x+4\ne0\\x^2-16\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x\ne-4\\x\ne\pm4\end{matrix}\right.\Leftrightarrow x\ne\pm4\)
b,\(\dfrac{4}{x-4}+\dfrac{3}{x+4}.\dfrac{6x}{x^2-16}=\dfrac{4}{x-4}+\dfrac{18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4\left(x+4\right)^2+18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4\left(x^2+8x+16\right)+18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4x^2+32x+64+18x}{\left(x-4\right)\left(x+4\right)^2}=\dfrac{4x^2+50x+64}{\left(x-4\right)\left(x+4\right)^2}\)
Cho biểu thức A = x căn x+1/x-1 - x -1/căn x+ 1 a,Tìm điều kiện xác định và rút gọn biểu thức A b, Tìm giá trị của biểu thức khi X = 9/4 c, Tìm tất cả giá trị của x để A
a: ĐKXĐ: x>=0; x<>1
\(A=\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}\)
\(=\dfrac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}-1\right)}{x-1}\)
\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}+x+\sqrt{x}-1}{x-1}=\dfrac{x+\sqrt{x}}{x-1}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
b: Khi x=9/4 thì A=3/2:1/2=3/2*2=3
cho biểu thức Q=(√x/√x-2+1/√x+2-2/4-√x):√2+3/√x-2 tìm điều kiện xác định và rút gọn Q
Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn. Viết ntn khó nhìn quá.
a. Khi rút gọn biểu thức hửu tỉ có tìm điều kiện xác định không ? từ đó hãy rút gọn biểu thức M = \(\left(\dfrac{1}{1+x}+\dfrac{2x}{1-x^{\text{2}}}\right):\left(\dfrac{1}{x}-1\right)\)
b. Khi rút gọn biểu thức chứa căn có tìm điều kiện không ? từ đó hãy rút gọn biểu thức N = \(\dfrac{\sqrt{x}+1}{\sqrt{\text{x}}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
\(a,ĐK:x\ne\pm1;x\ne0\\ M=\dfrac{1-x+2x}{\left(1+x\right)\left(1-x\right)}:\dfrac{1-x}{x}\\ M=\dfrac{x+1}{\left(x+1\right)\left(1-x\right)}\cdot\dfrac{x}{1-x}=\dfrac{x}{\left(1-x\right)^2}\\ b,ĐK:x\ge0;x\ne4\\ N=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ N=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
Tất cả đều phải tìm điều kiện
Cho biểu thức sau
\(A=\dfrac{x-3}{x+2}vàB=\dfrac{6-7x}{x^2-4}+\dfrac{3}{x+2}-\dfrac{2}{2-x}\)
Tìm điều kiện xác định của B và rút gọn biểu thức B
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Ta có: \(B=\dfrac{6-7x}{x^2-4}+\dfrac{3}{x+2}-\dfrac{2}{2-x}\)
\(=\dfrac{6-7x+3x-6+2x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\dfrac{-2x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=-\dfrac{2}{x+2}\)
Cho biểu thức: \(A=\dfrac{2+x}{2-x}+\dfrac{4x^2}{4-x^2}-\dfrac{2-x}{2+x}\)
a) Tìm điều kiện xác định rồi rút gọn biểu thức A.
b) Tìm x để A = - 5
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(A=\dfrac{-\left(x+2\right)}{x-2}-\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{x+2}\)
\(=\dfrac{-x^2-4x-4-4x^2+x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{-4x^2-8x}{\left(x-2\right)\left(x+2\right)}=\dfrac{-4x}{x-2}\)
Cho biểu thức P = (x/(x - 2) - (x - 2)/(x + 2)) / (1/(x ^ 2 - 4)) a) Tìm điều kiện của x để biểu thức P được xác định. b) Rút gọn biểu thức P. c) Tìm x để P = 0
\(P=\dfrac{\dfrac{x}{x-2}-\dfrac{x-2}{x+2}}{\dfrac{1}{x^2-4}}\)
a)
Để giá trị của biểu thức P được xác định, thì :
\(\left[{}\begin{matrix}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x\ne2\\x\ne-2\\x\ne-2;2\end{matrix}\right.\)
Vậy ĐKXĐ của biểu thức P là : \(x\ne\left\{2;-2\right\}\)
b)
\(P=\dfrac{\dfrac{x}{x-2}-\dfrac{x-2}{x+2}}{\dfrac{1}{x^2-4}}=\left(\dfrac{x}{x-2}-\dfrac{x-2}{x+2}\right):\dfrac{1}{x^2-4}=\left(\dfrac{x\left(x+2\right)-\left(x-2\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\dfrac{x^2-4}{1}\)
\(=\dfrac{x^2+2x-x^2+2x-4}{x^2-4}.\dfrac{x^2-4}{1}=\dfrac{4x-4}{x^2-4}.\dfrac{x^2-4}{1}=4x-4\)
c)
Để :
\(P=0\Rightarrow4x-4=0\)
\(\Rightarrow4\left(x-1\right)=0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
Vậy.....
Cho biểu thức \(P=\left(\dfrac{x}{x-2}-\dfrac{3+x}{x+2}\right):\dfrac{x+6}{x^2-4x+4}\)a) Tìm điều kiện xác định của biểu thức Pb) Rút gọn biểu thức Pc) Tính giá trị của biểu thức P tại x = -4 và tại x = 2
Cho biểu thức A =x2+4x+4/3x+6
a) Tìm điều kiện xác định của A b) Rút gọn biểu thức A. c)Tính giá trị của biểu thức A khi x =1/4
a) ĐKXĐ: 3x + 6 khác 0
x khác -2
b) A = (x² + 4x + 4)/(3x + 6)
= (x + 2)²/[3(x + 2)]
= (x + 2)/3
c) Khi x = 1/4, ta có:
A = (1/4 + 2)/3
= (9/4)/3
= 3/4