Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đào Gia Phong
Xem chi tiết

cho hình vẽ nào cơ

bạn phải đăng lên chứ

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 16:26

\(A = \sin {150^o} + \tan {135^o} + \cot {45^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\sin {150^o} = \frac{1}{2};\tan {135^o} =  - 1;\cot {45^o} = 1.\)

\( \Rightarrow A = \frac{1}{2} - 1 + 1 = \frac{1}{2}.\)

\(B = 2\cos {30^o} - 3\tan 150 + \cot {135^o}\)

Sử dụng bảng giá trị lượng giác của một số góc đặc biệt, ta có:

\(\cos {30^o} = \frac{{\sqrt 3 }}{2};\tan {150^o} =  - \frac{{\sqrt 3 }}{3};\cot {135^o} =  - 1.\)

\( \Rightarrow B = 2.\frac{{\sqrt 3 }}{2} - 3.\left( { - \frac{{\sqrt 3 }}{3}} \right) + 1 = 2\sqrt 3  + 1.\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:30

A. \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\) (Loại)

Vì: Theo định lí cos ta có: \({a^2} = {b^2} + {c^2} - 2bc.\cos A\)

Không đủ dữ kiện để suy ra \({a^2} = {b^2} + {c^2} + \sqrt 2 ab.\)

B. \(\frac{b}{{\sin A}} = \frac{a}{{\sin B}}\) (Loại)

Theo định lí sin, ta có: \(\frac{a}{{\sin A}} = \frac{b}{{\sin B}} \nRightarrow \frac{b}{{\sin A}} = \frac{a}{{\sin B}}\)

C. \(\sin B = \frac{{ - \sqrt 2 }}{2}\)(sai vì theo câu a, \(\sin B = \frac{{\sqrt 2 }}{2}\))

D. \({b^2} = {c^2} + {a^2} - 2ca\cos {135^o}.\)

Theo định lý cos ta có:

\({b^2} = {c^2} + {a^2} - 2ca.\cos B\) (*)

Mà \(\widehat B = {135^o} \Rightarrow \cos B = \cos {135^o}\).

Thay vào (*) ta được: \({b^2} = {c^2} + {a^2} - 2ca\;\cos {135^o}\)

=> D đúng.

Chọn D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 6 2017 lúc 16:31

Gọi AH là chiều cao của tam giác APF.

Ta có: SAPF = AH.PF/2.

a) SPIF = SPAF

⇔ chiều cao IK = AH (Chung cạnh đáy PF).

⇔ I nằm trên đường thẳng song song với PF và cách PF 1 khoảng bằng AH.

b) SPOF = 2.SPAF

⇔ chiều cao OM = 2.AH

⇔ O nằm trên đường thẳng song song với PF và cách PF một khoảng bằng 2.AH

c) Giải bài 22 trang 122 Toán 8 Tập 1 | Giải bài tập Toán 8

⇔ chiều cao NQ = AH/2

⇔ N nằm trên đường thẳng song song với PF và cách PF một khoảng bằng AH/2.

Giải bài 22 trang 122 Toán 8 Tập 1 | Giải bài tập Toán 8

Tên gì không cần biết
Xem chi tiết
yencute
3 tháng 5 2021 lúc 20:25

Tôi ko bt=)

Trần Đặng Quỳnh Hương
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 11:33

Vd5: D

Vd6: D

Đỗ Thanh Tùng
Xem chi tiết
Akai Haruma
4 tháng 4 2021 lúc 4:11

Đáp án C.

Đỗ Thanh Tùng
Xem chi tiết
HT2k02
3 tháng 4 2021 lúc 21:41

C nhé bạn 

Công thức của nó có tính góc BIC = 90 + BAC/2=135

Nguyễn Thị Kim chung
Xem chi tiết
응웬 티 하이
2 tháng 8 2017 lúc 21:11

Hỏi đáp Toán

Kẻ thêm tia Oz trong \(\widehat{AOB}\) sao cho Oz // By(1)

Ta có: Oz // By (cách dựng) \(\Rightarrow\widehat{B}+\widehat{O_1}=180^0\)( tổng 2 góc trong cùng phía)

\(\Leftrightarrow\widehat{O_1}=180^0-105^0=75^0\)

Ta có: \(\widehat{O_1}+\widehat{O_2}=120^0\)

\(\Leftrightarrow75^0+\widehat{O_2}=120^0\)

\(\Leftrightarrow\widehat{O_2}=120^0-75^0=45^0\)

Ta có: \(\widehat{O_2}+\widehat{A}=45^0+135^0=180^0\)

mà 2 góc ở vị trí trong cùng phía

=> Oz//Ax(2)

Từ (1), (2) => Ax//By

Phạm An Khánh
Xem chi tiết
Hânn Ngọc:))
10 tháng 8 2021 lúc 19:33

Hình bn tự vẽ nha

Vì Ox, Oy là 2 tia đối nhau 

Nên xOy=180*( góc bẹt)

Ta có: xOt+tOy=xOy=180*

     => xOt=180*-90*

        => xOt= 90*

Vì Ov là tia phân giác của góc xOt

=> tOv=vOx=xOt2=90độ2=45độxOt2=90độ2=45độ 

=> Tia Ox nằm giữa 2 tia Ov và Oz

nên vOx +xOz=vOz

        45*+135*=vOz

=> vOz=180*

b/ Vì Ox và Oy là 2 tia đối nhau nên

Ov và Oz là 2 tia đối nhau

Vậy xOv và zOy là 2 góc đối đỉnh

Shinichi Kudo
10 tháng 8 2021 lúc 19:45

O y x z t m

Vì Om là phân giác của \(\widehat{xOt}\) nên \(\widehat{xOm}=\widehat{mOt}=\dfrac{\widehat{xOt}}{2}=\dfrac{90^o}{2}=45^o\)(1)

Ta có: \(\widehat{xOz}+\widehat{zOy}=180^o\) (kề bù)

         \(135^o+\widehat{zOy}=180^o\)

         \(\widehat{zOy}=45^o\)(2)

Từ (1),(2)=> \(\widehat{zOy}=\widehat{xOm}\)

=> \(\widehat{zOy}\) và \(\widehat{xOm}\) là 2 góc đối đỉnh 

=>Om và Oz đối nhau

 

Shinichi Kudo
10 tháng 8 2021 lúc 19:51

b)\(\widehat{xOt}+\widehat{tOy}=180^o\)

   \(90^o+\widehat{tOy}=180^o\)

   \(\widehat{tOy}=90^o\)

=>\(Oy\perp Ot\)

Vậy Oy không đối Ot mà 2 góc đối đỉnh tạo nên từ cặp tia đối nên

\(\widehat{mOt}\) và \(\widehat{yOz}\) không đối đỉnh