CHO A, B, C LÀ ĐỘ DÀI 3 CẠNH CỦA MỘT TAM GIÁC, CMR:
1/A+B-C+1/B+C-A+1/C-A+B>=1/A+1/B+1/C
cho a,b,c là độ dài 3 cạnh tam giác .
1.CMR : abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )
2. \(\frac{1}{a+b},\frac{1}{b+c},\frac{1}{c+a}\) cũng là độ dài 3 cạnh của 1 tam giác.
1. đặt b + c - a = x, a + c - b = y , a + b - c = z thì x,y,z > 0
theo bất đẳng thức ( x + y ) ( y + z ) ( x + z ) \(\ge\)8xyz ( tự chứng minh ) , ta có :
2a . 2b . 2c \(\ge\)8 ( b + c - a ) ( a + c - b ) ( a + b - c )
\(\Rightarrow\)abc \(\ge\)( b + c - a ) ( a + c - b ) ( a + b - c )
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
Ta có a + b > c, b + c > a, a + c > b
Xét \(\frac{1}{a+c}+\frac{1}{b+c}>\frac{1}{a+c+b}+\frac{1}{b+c+a}=\frac{2}{a+b+c}>\frac{2}{a+b+a+b}=\frac{1}{a+b}\)
tương tự : \(\frac{1}{a+b}+\frac{1}{a+c}>\frac{1}{b+c},\frac{1}{a+b}+\frac{1}{b+c}>\frac{1}{a+c}\)
vậy ...
Cách khác của câu 1.
Ta có:
\(\hept{\begin{cases}a\ge\left|b-c\right|\\b\ge\left|a-c\right|\\c\ge\left|a-b\right|\end{cases}}\Rightarrow\hept{\begin{cases}a\ge\left(b-c\right)^2\\b\ge\left(a-c\right)^2\\c\ge\left(a-b\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}a^2\ge a^2-\left(b-c\right)^2\left(1\right)\\b^2\ge b^2-\left(a-c\right)^2\left(2\right)\\c^2\ge c^2-\left(a-b\right)^2\left(3\right)\end{cases}}\)
Nhân vế theo vế của (1);(2);(3) ta có:
\(a^2b^2c^2\ge\left[a^2-\left(b-c\right)^2\right]\left[b^2-\left(a-c\right)^2\right]\left[c^2-\left(a-b\right)^2\right]\)
\(\Rightarrow a^2b^2c^2\ge\left(b+c-a\right)^2\left(a+c-b\right)^2\left(a+b-c\right)^2\)
\(\Rightarrowđpcm\)
Cho a, b, c là độ dài 3 cạnh của 1 tam giác. CMR: \(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(A=\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{4}{a+b-c+b+c-a}\ge\dfrac{4}{2b}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\ge\dfrac{4}{b+c-a+c+a-b}\ge\dfrac{4}{2c}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{c+a-b}\ge\dfrac{4}{a+b-c+c+a-b}\ge\dfrac{4}{2a}\ge\dfrac{2}{a}\end{matrix}\right.\)
\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{c+a-b}\right)\ge\left(\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)
\(\Rightarrow A\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) \(dấu"="xảy\) \(ra\Leftrightarrow a=b=c\)
Cho a, b, c là độ dài 3 cạnh của 1 tam giác
CMR : ( a + b + c )( 1/ a + 1/b + 1/c ) > 6
Giúp mk với
Đặt \(A=\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
\(=\left(a+b+c\right).\frac{1}{a}+\left(a+b+c\right).\frac{1}{b}+\left(a+b+c\right).\frac{1}{c}\)
\(=\frac{a+b+c}{a}+\frac{a+b+c}{b}+\frac{a+b+c}{c}\)
\(=\frac{a}{a}+\frac{b+c}{a}+\frac{b}{b}+\frac{a+c}{b}+\frac{c}{c}+\frac{a+b}{c}\)
\(=1+\frac{b+c}{a}+1+\frac{a+c}{b}+1+\frac{a+b}{c}\)
\(=3+\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\)
Ta có: trong 1 tam giác thì tổng độ dài 2 cạnh bao giờ cũng lớn hơn cạnh còn lại ( bất đẳng thức tam giác )
\(\Rightarrow\hept{\begin{cases}b+c>a\\a+c>b\\a+b>c\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{b+c}{a}>1\\\frac{a+c}{b}>1\\\frac{a+b}{c}>1\end{cases}}\)
\(\Rightarrow A>3+1+1+1\)
\(\Rightarrow A>6\left(đpcm\right)\)
1. Cho a,b,c là độ dài 3 cạnh của 1 tam giác vuông, cạnh huyền là a. Cmr: a3 > b3 + c3
2. Cho a,b,c > 0 và a+b+c=4. CMR: ab/a+b+2c + bc/2a+b+c + ac/a+2b+c <= 1
Cho a,b,c là độ dài 3 cạnh tam giác ABC
Biết : (1+b/a)*(1+c/b)*(1+a/c)
CMR tam giác ABC đều
Cho a,b,c là độ dài 3 cạnh của 1 tam giác. CMR \(|\frac{a-b}{a+b}+\frac{b-c}{b+c}+\frac{c-a}{c+a}|< 1\)
Cho a,b,c là độ dài 3 cạnh của tam giác và a+b+c=3.CMR:
\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Bài này là bài chốt trong đề thi hsg toán 9 cấp huyện năm nay của đức thọ đó!
bạn vào Thư viện đề thi THCS Hoàng Xuân Hãn rồi bấm vào mục ở dưới dưới ak tên mục là
Đáp án đề thi hsg toán 9 huyện Đức Thọ năm học 2018-2019 Đây là bài cuối của đề ak!
mk gửi hình rồi đó! bạn có thấy nó hiện ra chưa?
1. Cho a,b,c là độ dài 3 cạnh của 1 tam giác vuông, cạnh huyền là a. Cmr:
a3 > b3 + c3
2. Cho a,b,c > 0 và a+b+c=4. CMR
ab/a+b+2c + bc/2a+b+c + ac/a+2b+c <= 1
Cho a,b,c là độ dài 3 cạnh của 1 tam giác.
Chứng minh rằng: 1/(a+b), 1/(a+c), 1/(b+c) cũng là dộ dài 3 cạnh của 1 tam giác