Chứng minh rằng các bất đẳng thức
Chứng minh rằng với mọi số tự nhiên n ≥ 2 , ta có các bất đẳng thức: 2 n + 1 > 2 n + 3
2n + 1 > 2n + 3 (2)
+ Với n = 2 thì (2) ⇔ 8 > 7 (luôn đúng).
+ Giả sử (2) đúng khi n = k ≥ 2, nghĩa là 2k+1 > 2k + 3.
Ta chứng minh đúng với n= k+ 1 tức là chứng minh: 2k+2 > 2(k+ 1)+ 3
Thật vậy, ta có:
2k + 2 = 2.2k + 1
> 2.(2k + 3) = 4k + 6 = 2k + 2 + 2k + 4.
> 2k + 2 + 3 = 2.(k + 1) + 3 ( Vì 2k + 4 >3 với mọi k ≥ 2)
⇒ (2) đúng với n = k + 1.
Vậy 2n + 1 > 2n + 3 với mọi n ≥ 2.
cho a,b,ce(0,1),chứng minh rằng ít nhất một trong các bất đẳng thức sau là sai
Chứng minh các bất đẳng thức :
Cho a + b + c = 0 . Chứng minh rằng : a3 + b3 + c3 = 3abcta có:
(a+b+c)3=a3+b3+c3+3a2b+3a2c+3b2a+3b2c+3c2a+3c2b+6abc
=a3+b3+c3+(3a2b+3a2c+3abc)+(3b2a+3b2c+3abc)+(3c2a+3c2b+3abc)-3abc
=a3+b3+c3+3a.(ab+ac+bc)+3b(ab+ac+bc)+3c.(ab+ac+bc)-3abc
=a3+b3+c3+3.(a+b+c)(ab+ac+bc)-3abc
=>03=a3+b3+c3+3.0.(ab+ac+bc)-3abc
0=a3+b3+c3-3abc
<=>a3 + b3 + c3 = 3abc
a + b + c = 0 => a + b = -c
TA có
a^3 + b^3 + c^3 = ( a+ b)^3 - 3ab . ( a+ b) + c^3
Thay a +b = -c ta có
a^3 + b^3 + c^3 = -c^3 - 3ab.(-c) + c^3 = 3abc (ĐPCM)
a+b+c=0
=>(a+b+c)3=0
=>a3+b3+c3+3a2b+3ab2+3b2c+3bc2+3a2c+3ac2+6abc=0
=>a3+b3+c3+(3a2b+3ab2+3abc)+(3b2c+3bc2+3abc)+(3a2c+3ac2+3abc)-3abc=0
=>a3+b3+c3+3ab(a+b+c)+3bc(a+b+c)+3ac(a+b+c)=3abc
Do a+b+c=0
=>a3+b3+c3=3abc(ĐPCM)
Chứng minh các bất đẳng thức sau: a 3 b 3 = a b 3
a 3 b 3 = a 3 3 . b 3 3 = a b 3
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Chứng minh các bất đẳng thức sau: a b 2 3 = 1 b a b 3 b ≠ 0
a b 2 3 = a b b 3 3 = 1 b a b 3 b ≠ 0
Vế trái bằng vế phải nên đẳng thức được chứng minh.
Chứng minh rằng với mọi số tự nhiên n ≥ 2 , ta có bất đẳng thức: 3 n > 3 n + 1
Chứng minh: 3n > 3n + 1 (1)
+ Với n = 2 thì (1) ⇔ 9 > 7 (luôn đúng).
+ Giả sử (1) đúng với n = k ≥ 2, tức là 3k > 3k + 1.
Ta chứng minh đúng với n= k+1 tức là chứng minh: 3k+ 1 > 3(k+1) + 1
Thật vậy, ta có:
3k + 1 = 3.3k > 3.(3k + 1) (Vì 3k > 3k + 1 theo giả sử)
= 9k + 3
= 3k + 3 + 6k
= 3.(k + 1) + 6k
> 3(k + 1) + 1.( vì k ≥ 2 nên 6k ≥ 12> 1)
⇒ (1) đúng với n = k + 1.
Vậy 3n > 3n + 1 đúng với mọi n ≥ 2.
Chứng minh các bất đẳng thức :
Cho a + b + c = 0 . Chứng minh rằng : a3 + b3 + c3 = 3abc.Cho a, b, c là độ dài ba cạnh của tam giác. Chứng minh rằng :
Chứng minh các bất đẳng thức sau ( n ∈ N ∗ ) sin 2 n α + cos 2 n α ≤ 1 .
Chứng minh các bất đẳng thức sau với x, y, z > 0