Trong mặt phẳng Oxy, cho hai điểm A(2;0) và B(6;4). Viết phương trình đường tròn (C) tiếp xúc với trục hoành tại A và khoảng cách từ tâm của (C) đến B bằng 5.
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2; 2); B( 5; -2). Tìm điểm M thuộc trục hoành sao cho A M B ^ = 90 0 ?
A. M(0; 1)
B. M( 6; 0)
C. M(2; 0)
D. M(0; 6)
Ta có M ∈ O x nên M(m; 0) và A M → = m − 2 ; − 2 B M → = m − 5 ; 2 .
Vì A M B ^ = 90 0 suy ra A M → . B M → = 0 nên m − 2 m − 5 + − 2 .2 = 0.
⇔ m 2 − 7 m + 6 = 0 ⇔ m = 1 m = 6 ⇒ M 1 ; 0 M 6 ; 0 .
Chọn B.
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2; 2); B (5 ; -2). Tìm điểm M thuộc trục hoàng sao cho A M B ^ = 90 0 ?
A. M(0; 1)
B. M( 6; 0)
C. M(1; 6)
D. M (0; 6)
Ta có M ∈ O x nên M( m; 0) và A M → = m − 2 ; − 2 B M → = m − 5 ; 2 .
Vì A M B ^ = 90 0 suy ra A M → . B M → = 0 nên m − 2 m − 5 + − 2 .2 = 0.
⇔ m 2 − 7 m + 6 = 0 ⇔ m = 1 m = 6 ⇒ M 1 ; 0 M 6 ; 0 .
Chọn B.
1. Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2-2x+4y-4=0\)và điểm M(-1;-3). Gọi I là tâm của (C). Viết phương trình đường thẳng đi qua M và cắt (C) tại hai điểm A,B sao cho tam giác IAB có diện tích lớn nhất
2. Trong mặt phẳng Oxy, cho đường tròn (C): \(x^2+y^2+4x+4y-17=0\) và điểm A(6;17). Viết phương trình tiếp tuyến của (C) biế tiếp tuyến đi qua điểm A.
Trong mặt phẳng Oxy, cho hai điểm A(1;-2), B(3;1). Viết phương trình tham số của đường thẳng d đi qua hai điểm A và B.
vecto AB=(2;3)
PTTS AB là;
x=1+2t và y=-2+3t
a) Tính khoảng cách từ gốc toạ độ C(0;0) đến điểm M(3 ; 4) trong mặt phẳng toạ độ Oxy.
b) Cho hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy. Nêu công thức tính độ dài đoạn thẳng IM.
a) Khoảng cách từ gốc tọa độ \(O\left( {0;0} \right)\) đến điểm \(M\left( {3;4} \right)\) trong mặt phẳng tọa độ Oxy là:
\(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{3^2} + {4^2}} = 5\)
b) Với hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy, ta có:\(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \)
Trong không gian Oxyz, cho hai điểm A(1;2;1), B(2;-1;3). Tìm điểm M trên mặt phẳng (Oxy) sao cho M A 2 − 2 M B 2 lớn nhất.
A. M 0 ; 0 ; 5 .
B. M 1 2 ; − 3 2 ; 0 .
C. M 3 ; − 4 ; 0 .
D. M 3 2 ; 1 2 ; 0 .
Đáp án C
Suy ra M là hình chiếu vuông góc của I lên (Oxy) => I(3;-4;0)
Trong không gian Oxyz, cho hai điểm A(1;2;1), B(2;-1;3). Tìm điểm M trên mặt phẳng (Oxy) sao cho M A 2 - 2 M B 2 lớn nhất.
A. M 0 ; 0 ; 5
B. M 1 2 ; - 3 2 ; 0
C. M 3 ; - 4 ; 0
D. M 3 2 ; 1 2 ; 0
Trong không gian Oxyz, cho hai điểm A(1;2;1), B(2;-1;3). Tìm điểm M trên mặt phẳng (Oxy) sao cho M A 2 - 2 M B 2 lớn nhất.
Đáp án A.
Cách giải:
Thử lần lượt 4 đáp án thì ta thấy với M(3;-4;0)
thì M A 2 - 2 M B 2 = 3 là lớn nhất.
Trong mặt phẳng Oxy cho hai điểm A ( 2 ; 3 ) , I ( 1 ; - 2 ) . Xác định tọa độ điểm B để I là trung điểm của AB.
A . ( 0 ; - 7 ) .
B . ( 3 2 ; 1 2 ) .
C. (1;2).
D . ( - 2 ; 1 ) .
Trong không gian Oxyz, cho hai điểm A (1; 2; 1), B (2; 1; -3). Tìm điểm M trên mặt phẳng (Oxy) sao cho M A 2 - 2 M B 2 lớn nhất.
A . M 3 2 ; 1 2 ; 0
B . M 1 2 ; - 3 2 ; 0
C. M (0; 0; 5)
D. M (3; -4; 0)