Cho tam giác ABC biết trực tâm H (1; 1) và phương trình cạnh AB: 5x- 2y+ 6=0, phương trình cạnh AC: 4x+ 7y -21= 0. Phương trình cạnh BC là:
A. 4x- 2y+1= 0
B. x- 2y + 14= 0
C.x- 2y+ 8 = 0
D. x- 2y- 14= 0
Cho tam giác ABC có ba góc nhọn và H là trực tâm. Tìm ảnh của tam giác ABC qua phép vị tự tâm H, tỉ số 1/2.
+ ΔABC nhọn ⇒ trực tâm H nằm trong ΔABC.
+ Gọi A’ = V(H; ½) (A)
⇒ A’ là trung điểm AH.
+ Tương tự :
B’ = V(H; ½) (B) là trung điểm BH.
C’ = V(H; ½) (C) là trung điểm CH.
⇒ V(H; ½)(ΔABC) = ΔA’B’C’ với A’; B’; C’ là trung điểm AH; BH; CH.
Cho tam giác ABC, đường cao AA', trực tâm H. Cho biết AH/AA'=k. Chứng minh: tanB.tanC = 1+k.
Cho tam giác ABC, đường cao AA', trực tâm H. Cho biết AH/AA'=k. Chứng minh: tanB.tanC = 1+k.
Cho tam giác ABC có trực tâm H cũng là trọng tâm của tam giác. Chứng minh tam giác ABC đều.
Giả sử tam giác ABC có H vừa là trực tâm, vừa là trọng tâm tam giác ABC. Ta phải chứng minh tam giác ABC đều.
Vì H là trọng tâm tam giác ABC nên AD, BE, CF vừa là các đường cao, vừa là các đường trung tuyến trong tam giác.
Suy ra: AF = BF = AE = CE = BD = CD;
\(AD \bot BC; BE \bot AC; CF \bot AB\)
Xét tam giác ADB và tam giác ADC có:
AD chung
\(\widehat{ADB}=\widehat{ADC} (=90^0)\)
BD = CD (D là trung điểm của đoạn thẳng BC).
Vậy \(\Delta ADB = \Delta ADC\)(c.g.c) nên AB = AC ( 2 cạnh tương ứng).
Tương tự, ta cũng được, AC = BC
Xét tam giác ABC có AB = AC = BC nên là tam giác đều.
Vậy tam giác ABC có trực tâm H cũng là trọng tâm của tam giác thì tam giác ABC đều.
Cho H là trực tâm của tam giác ABC không vuông. Tìm trực tâm của các tam giác HAB, HAC, HBC.
Trong ΔABC ta có H là trực tâm nên:
AH ⊥ BC, BH ⊥ AC, CH ⊥ AB
Trong ΔAHB, ta có:
AC ⊥ BH
BC ⊥ AH
Vì hai đường cao kẻ từ A và B cắt nhau tại C nên C là trực tâm của tam giác AHB.
Trong ΔHAC, ta có:
AB ⊥ CH
CB ⊥ AH
Vì hai đường cao kẻ từ A và C cắt nhau tại B nên B là trực tâm của ΔHAC.
Trong ΔHBC, ta có:
BA ⊥ HC
CA ⊥ BH
Vì hai đường cao kẻ từ B và C cắt nhau tại A nên A là trực tâm của tam giác HBC.
Trong mp xOy cho tam giác ABC. bt A(3;-1) B(-1;2) I(1;-1) là trọng tâm của tam giác ABC. Trực tâm H của tam giác ABC có tọa độ (a;b). Tính a+3b
Tọa độ điểm C:
\(\left\{{}\begin{matrix}x_C=3x_I-x_A-x_B=1\\y_C=3y_I-y_A-y_B=-4\end{matrix}\right.\Rightarrow C\left(1;-4\right)\)
Ta có:
\(\overrightarrow{AH}=\left(a-3;b+1\right)\)
\(\overrightarrow{BH}=\left(a+1;b-2\right)\)
\(\overrightarrow{BC}=\left(2;-6\right)\)
\(\overrightarrow{AC}=\left(-2;-3\right)\)
Theo giả thiết
\(AH\perp BC\Rightarrow2\left(a-3\right)-6\left(b+1\right)=0\Leftrightarrow a-3b=6\left(1\right)\)
\(BH\perp AC\Rightarrow-2\left(a+1\right)-3\left(b-2\right)=0\Leftrightarrow2a+3b=4\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\left\{{}\begin{matrix}a=\dfrac{10}{3}\\b=-\dfrac{8}{9}\end{matrix}\right.\Rightarrow a+3b=\dfrac{2}{3}\)
cho tam giác ABC nội tiếp (O;4). gọi H là trực tâm tam gaics ABC, biết góc C bằng 60o. Tính CH
Cho tam giác ABC có A(-1; 1), B(3; 1), C(2; 4). Tìm tọa độ trực tâm H của tam giác ABC?
A. H( 1;1)
B. H( 1; 2)
C. (2;1)
D. (2;2)
Chọn D.
Gọi H (x; y) là trực tâm tam giác ABC nên
Mà
Suy ra:
Vậy H(2; 2).
Cho H là trực tâm của tam giác ABC không vuông . Tìm trực tâm của các tam giác HAB,HAC,HBC.