lim x → 2 2018 x 2 - 4 2018 x - 2 2018
A. 2 2019
B. 2 2018
C. 2
D. + ∞
Tính \(x\underrightarrow{lim}1\) \(\frac{C^0_{2018}+C^2_{2018}x^2+...+C^{2018}_{2018}x^{2018}-2^{2017}}{x-1}\)
Xét 2 khai triển:
\(\left(x+1\right)^{2018}=C_{2018}^0+C_{2018}^1x+C_{2018}^2x^2+...+C_{2018}^{2018}x^{2018}\)
\(\left(x-1\right)^{2018}=C_{2018}^0-C_{2018}^1x+C_{2018}^2x^2-...+C_{2018}^{2018}x^{2018}\)
Cộng vế với vế:
\(\left(x+1\right)^{2018}+\left(x-1\right)^{2018}=2\left(C_{2018}^0+C_{2018}^2x^2+...+C_{2018}^{2018}x^{2018}\right)\)
\(\Leftrightarrow C_{2018}^0+C_{2018}^2x^2+...+C_{2018}^{2018}x^{2018}=\frac{1}{2}\left(x+1\right)^{2018}+\frac{1}{2}\left(x-1\right)^{2018}\)
\(\Rightarrow\lim\limits_{x\rightarrow1}=\frac{\frac{1}{2}\left(x+1\right)^{2018}+\frac{1}{2}\left(x-1\right)^{2018}-2^{2017}}{x-1}=\lim\limits_{x\rightarrow1}\frac{1009\left(x+1\right)^{2017}+1009\left(x-1\right)^{2017}}{1}=1009.2^{2017}\)
cho \(\lim\limits_{x\rightarrow-\infty}\dfrac{a\sqrt{x^2+1}+2017}{x+2018}=\dfrac{1}{2}\); \(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+bx+1}-x\right)=2\). Tính P=4a+b
\(\lim\limits_{x\rightarrow-\infty}\dfrac{-a\sqrt{1+\dfrac{1}{x^2}}+\dfrac{2017}{x}}{1+\dfrac{2018}{x}}=-a\Rightarrow a=-\dfrac{1}{2}\)
\(\lim\limits_{x\rightarrow+\infty}\dfrac{bx+1}{\sqrt{x^2+bx+1}+x}=\lim\limits_{x\rightarrow+\infty}\dfrac{b+\dfrac{1}{x}}{\sqrt{1+\dfrac{b}{x}+\dfrac{1}{x^2}}+1}=\dfrac{b}{2}=2\Rightarrow b=4\)
\(\Rightarrow P=2\)
Tính \(\lim\limits_{x\rightarrow1}=\frac{\left(x^2+x+1\right)^{2018}+\left(x+2\right)^{2018}-2.3^{2018}}{\left(x-1\right)\left(x+2017\right)}\)
Lời giải:
\(\frac{(x^2+x+1)^{2018}+(x+2)^{2018}-2.3^{2018}}{(x-1)(x+2017)}=\frac{(x^2+x+1)^{2018}-3^{2018}+(x+2)^{2018}-3^{2018}}{(x-1)(x+2017)}\)
\(=\frac{(x^2+x-2)[(x^2+x+1)^{2017}+...+3^{2017}]+(x-1)[(x+2)^{2017}+...+3^{2017}]}{(x-1)(x+2017)}\)
\(=\frac{(x+2)[(x^2+x+1)^{2017}+...+3^{2017}]+(x+2)^{2017}+...+3^{2017}}{x+2017}\)
Do đó:
\(\lim_{x\to 1}\frac{(x^2+x+1)^{2018}+(x+2)^{2018}-2.3^{2018}}{(x-1)(x+2017)}=\lim_{x\to 1}\frac{(x+2)[(x^2+x+1)^{2017}+...+3^{2017}]+(x+2)^{2017}+...+3^{2017}}{x+2017}\)
\(=\frac{3\underbrace{(3^{2017}+3^{2017}+...+3^{2017})}_{2018}+\underbrace{3^{2017}+...+3^{2017}}_{2018}}{1+2017}\)
\(=\frac{3.2018.3^{2017}+2018.3^{2017}}{2018}=3^{2018}+3^{2017}=3^{2017}.4\)
Tính các giới hạn sau:
a) $\underset{x\to 2}{\mathop{\lim }}\,\left( \sqrt{x+2}+2018 \right)$.
b) $\underset{n\to +\infty }{\mathop{\lim }}\,\dfrac{{{3.4}^{n}}+{{2}^{n}}}{{{5.4}^{n}}+{{3}^{n}}}$.
c) $\underset{x\to -3}{\mathop{\lim }}\,\dfrac{{{x}^{2}}+4x+3}{{{x}^{2}}-9}$.
a) \(lim_{x\rightarrow2}\left(\sqrt{x+2}+2018\right)=lim_{x\rightarrow2}\left(\sqrt{2+2}+2018\right)=2020\)
b)\(lim_{x\rightarrow+\infty}\dfrac{3.4^n+2^n}{5.4^n+3^n}=lim_{x\rightarrow+\infty}\dfrac{3+\left(\dfrac{2}{4}\right)^n}{5+\left(\dfrac{3}{4}\right)^n}=\dfrac{3+0}{5+0}=\dfrac{3}{5}\)
c) \(lim_{x\rightarrow-3}\dfrac{x^2+4x+3}{x^2-9}=lim_{x\rightarrow-3}\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=lim_{x\rightarrow-3}\dfrac{x+1}{x-3}=\dfrac{-3+1}{-3-3}=\dfrac{1}{3}\)
a) limx→2(√x+2+2018)=√2+2+2018=2020limx→2(x+2+2018)=2+2+2018=2020.
b) limn→+∞3.4n+2n5.4n+3n=limn→+∞3+2n4n5+3n4n=limn→+∞3+(12)n5+(34)n=35limn→+∞3.4n+2n5.4n+3n=limn→+∞3+2n4n5+3n4n=limn→+∞3+(12)n5+(34)n=35.
limx→−3x2+4x+3x2−9=limx→−3(x+1)(x+3)(x−3)(x+3)=limx→−3x+1x−3=−3+1−3−3=13limx→−3x2+4x+3x2−9=limx→−3(x+1)(x+3)(x−3)(x+3)=limx→−3x+1x−3=−3+1−3−3=13.
Limx->1 (\(\frac{2017}{1-x^{2017}}-\frac{2018}{1-x^{2018}}\) )
cho hàm số f(x)=2x2+x-3
tìm \(\lim\limits_{x\rightarrow+\infty}\)\(\dfrac{\sqrt{f\left(x\right)}+\sqrt{f\left(4x\right)}+\sqrt{\left(4^2x\right)}+...+\sqrt{f\left(4^{2018}x\right)}}{\sqrt{f\left(x\right)}+\sqrt{f\left(2x\right)}+\sqrt{\left(2^2x\right)}+...+\sqrt{f\left(2^{2018}x\right)}}\)=\(\dfrac{a^{2019}+b}{c}\) với a,b,c là ba số nguyên dương và b<2019.Tính S=a+b-c
lim\(\frac{\sqrt[2018]{11x+1}-1}{x}\) x->0
Ta thấy nó có dạng \(\frac{0}{0}\)
Áp dụng Lopitan ta được
\(lim\frac{\sqrt[2018]{11x+1}-1}{x}=lim\frac{11}{2018\sqrt[2018]{\left(11x+1\right)^{2017}}}=\frac{11}{2018}\)
a. Lim x->3 x^3-27/3x^2-5x-2 b. Lim x->2 căn bậc hai (x+2)-2/4x^2-3x-2 c. Lim x->1 1-x^2/x^2-5x+4 d. Lim x->1 căn bậc ba (x+7)/x^3+27+1
a. \(lim_{x\rightarrow3}\dfrac{x^3-27}{3x^2-5x-2}=\dfrac{3^3-27}{3.3^2-5.3-2}=\dfrac{0}{10}=0\)
b. \(lim_{x\rightarrow2}\dfrac{\sqrt{x+2}-2}{4x^2-3x-2}=\dfrac{\sqrt{2+2}-2}{4.2^2-3.2-2}=\dfrac{0}{8}=0\)
c. \(lim_{x\rightarrow1}\dfrac{1-x^2}{x^2-5x+4}=lim_{x\rightarrow1}\dfrac{\left(1-x\right)\left(x+1\right)}{\left(x-1\right)\left(x-4\right)}=lim_{x\rightarrow1}\dfrac{-\left(x+1\right)}{x-4}=\dfrac{-\left(1+1\right)}{1-4}=\dfrac{2}{3}\)
d. Câu này mình chịu, nhìn đề hơi lạ so với bình thường hehe
Tìm các giới hạn sau
1. lim ( x đến 1) \(\dfrac{\sqrt{2x+7}-3}{2-\sqrt{x+3}}\)
2. lim ( x đến 1-) \(\dfrac{2x-3}{1-x}\)
3. lim ( x đến 2+) \(\dfrac{x-3}{2-x}\)
4. lim ( x đến +-∞) \(\dfrac{-8x^3+9x^2+x-1}{5x^2+1}\)
5. lim ( x đến -∞) \(\dfrac{\sqrt{x^2}-x-1+3x}{2x+7}\)
1/ \(=\lim\limits_{x\rightarrow1}\dfrac{\left(2x+7-9\right)\left(2+\sqrt{x+3}\right)}{\left(4-x-3\right)\left(\sqrt{2x+7}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{2\left(x-1\right)\left(2+\sqrt{x+3}\right)}{\left(x-1\right)\left(-\sqrt{2x+7}-3\right)}=\dfrac{2.4}{-6}=-\dfrac{4}{3}\)
2/ \(=\lim\limits_{x\rightarrow1^-}\dfrac{2.1-3}{1-1}=-\infty\)
3/ \(=\lim\limits_{x\rightarrow2^+}\dfrac{3-x}{x-2}=+\infty\)
4/ \(=\lim\limits_{x\rightarrow\pm\infty}\dfrac{-\dfrac{8x^3}{x^2}+\dfrac{9x^2}{x^2}+\dfrac{x}{x^2}-\dfrac{1}{x^2}}{\dfrac{5x^2}{x^2}+\dfrac{1}{x^2}}=\lim\limits_{x\rightarrow\pm\infty}\dfrac{-8x}{5}=\pm\infty\)
5/ \(=\lim\limits_{x\rightarrow-\infty}\dfrac{-\sqrt{\dfrac{x^2}{x^2}}+\dfrac{2x}{x}-\dfrac{1}{x}}{\dfrac{2x}{x}+\dfrac{7}{x}}=\dfrac{1}{2}\)
Tìm giới hạn hàm số Lim x->4 1-x/(x-4)^2 Lim x->3+ 2x-1/x-3 Lim x->2+ -2x+1/x+2 Lim x->1- 3x-1/x+1
1: \(\lim\limits_{x\rightarrow4}\dfrac{1-x}{\left(x-4\right)^2}=-\infty\)
vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow4}1-x=1-4=-3< 0\\\lim\limits_{x\rightarrow4}\left(x-4\right)^2=\left(4-4\right)^2=0\end{matrix}\right.\)
2: \(\lim\limits_{x\rightarrow3^+}\dfrac{2x-1}{x-3}=+\infty\)
vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow3^+}2x-1=2\cdot3-1=5>0\\\lim\limits_{x\rightarrow3^+}x-3=3-3>0\end{matrix}\right.\) và x-3>0
3: \(\lim\limits_{x\rightarrow2^+}\dfrac{-2x+1}{x+2}\)
\(=\dfrac{-2\cdot2+1}{2+2}=\dfrac{-3}{4}\)
4: \(\lim\limits_{x\rightarrow1^-}\dfrac{3x-1}{x+1}=\dfrac{3\cdot1-1}{1+1}=\dfrac{2}{2}=1\)