Giá trị của m để hàm số y = m x + 4 x + m nghịch biến trên − ∞ ; 1 là
A. − 2 < m < 2.
B. − 2 < m ≤ − 1.
C. − 2 ≤ m ≤ 2.
D. − 2 ≤ m ≤ 1.
Câu 3 Để đồ thị hàm số \(y=-x^4-\left(m-3\right)x^2+m+1\) có điểm cực đạt mà không có điểm cực tiểu thì tất cả giá trị thực của tham số m là
Câu 4 Cho hàm số \(y=x^4-2mx^2+m\) .Tìm tất cả các giá trị thực của m để hàm số có 3 cực trị
Cho hàm số y= (m-1)x + m +3
1) Tìm giá trị của m để đồ thị của hàm số song song với đồ thị hàm số y= -2x + 1.
2) Tim giá trị của m để đồ thị của hàm số đi qua điểm (1; -4).
3) Tìm điểm cố định mà đồ thị của hàm số luôn đi qua với mọi m.
4) Tim giá trị của m để đồ thị của hàm số tạo với trục tung và trục hoành một tam giác có diện tích bằng 1 (đvdt).
Vì hs y = (m-1)x +m +3 đi qua điểm (1; -4) nên ta đc :
-4 = (m-1) + m+3
<=> -4 = 2m + 2
<=> m =-3
1) Đặt tên cho dễ giải nè:
(d1) : y= (m-1) x + m+ 3
(d2) : y = -2x + 1
(d1) // (d2) <=> m - 1 = -2 và m+ 3 \(\ne\)1
<=> m = -1 và m \(\ne\)-2
1. để đồ thị của hàm số \(y=\left(m-1\right)x+m+3\) // với \(y=-2x+1\),
\(\left\{{}\begin{matrix}m-1=-2\\m+3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-1\\m\ne-2\end{matrix}\right.\)
2. để đi qua điểm (1;-4),
\(-4=m-1+m+3\\ \Leftrightarrow-4=2m+2\Leftrightarrow m=-3\)
3. \(y=\left(m-1\right)x+m+3\\ \Leftrightarrow x+y=mx+m+3\\ \Leftrightarrow x+y-3=m\left(x+1\right)\)
tọa độ điểm cố định là nghiệm của hpt
\(\left\{{}\begin{matrix}x+y-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\)
đ cđịnh M(-1;4)
4. \(y=\left(m-1\right)x+m+3\)
+ Khi x=0, y=m+3
+ khi y=0, \(x=\dfrac{-m-3}{m-1}\)
Để \(S=1\Rightarrow\dfrac{-m-3}{m-1}.\left(m+3\right)=2\\ \Leftrightarrow\left(m+3\right)^2=2\left(1-m\right)\\ \Leftrightarrow m^2+8m+7=0\Leftrightarrow\left(m+1\right)\left(m+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-7\end{matrix}\right.\)
1,Tìm tất cả các giá trị của m để hàm số y=2x^2 - 3mx + m - 2 trên x-1 đạt cực đại tại điểm x=2. 2, Tìm tất cả các giá trị của m để hàm số y= x^2 + mx +1 trên x+m đạt cực tiểu tại điểm x=2. 3, Tìm tất cả các giá trị của m để hàm số y=x^2 -(2m-1)x+3 trên x+2 có cực đại và cực tiểu . 4, Tìm m để hso y=x^2 +m(m^2-1)x-m^4+1 trên x-m có cực đại và cực tiểu. Mọi người giúp em với ạ . Em cảm ơn ạ !
Bài 8. Cho hàm số y = (m - 2)x + m + 1 (d)
1) Với giá trị nào của m thì hàm số đã cho là hàm số bậc nhất ?
2) Tìm giá trị của m để đường thẳng (d) đi qua gốc tạo độ
3) Tim giá trị của m để đường thẳng (d) đi qua điểm A(2; 3)
4) Tìm giá trị của m để đường thẳng (d) tạo với trục Ox một góc tù
5) Tim m để đường thẳng (d) song song với đường thẳng y 3x +2 (d1)
Cho hàm số y = f ( x ) = x - m 2 x + 4 với m là số thực. Tìm giá trị lớn nhất của m để hàm số f(x) có giá trị nhỏ nhất trên [0;1] bằng -1
A. m = 2
B. m = 0
C. m 6
D. m = 3
giải hộ mình bài này đc k
cho hàm số y=(m-2)x+m+3 (1)
a) Tìm giá trị của m để đồ thị hàm số (1) song song vs đường thẳng y=-x+3
b)Tìm giá trị của m để đồ thị hàm số (1) cắt đường thẳng y=2x+4 tại điểm có tung độ bằng 2
a.
ĐTHS song với với đường thẳng đã cho khi:
\(\left\{{}\begin{matrix}m-2=-1\\m+3\ne3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=1\\m\ne0\end{matrix}\right.\) \(\Rightarrow m=1\)
b.
Gọi A là giao điểm của ĐTHS và \(y=2x+4\Rightarrow y_A=2\)
\(\Rightarrow2x_A+4=2\Rightarrow x_A=-1\)
\(\Rightarrow A\left(-1;2\right)\)
Thế tọa độ A vào (1):
\(-1\left(m-2\right)+m+3=2\Leftrightarrow5=2\left(ktm\right)\)
Vậy ko tồn tại m thỏa mãn yêu cầu đề bài
Câu 1 : Tìm tất cả các giá trị của tham số thực m để hàm số \(y=mx^3-2mx^2+\left(m-2\right)x+1\) không có cực trị
Câu 2: Tìm tất cả các giá trị thực của tham số m để hàm số \(y=\left(m-1\right)x^4-2\left(m-3\right)x^2+1\) không có cực đại
Cho hàm số: y=(m+4)x-m + 6 (d)
a, Tìm các giá trị của m để hàm số đồng biến, nghịch biến
b, tìm giá trị của m, biết rằng đường thẳng (d) đi qua điểm A(-1;2). Vẽ đồ thị của hàm số với giá trị tìm được của m
a. \(\left\{{}\begin{matrix}DB:m+4>0\Leftrightarrow m>-4\\NB:m+4< 0\Leftrightarrow m< -4\end{matrix}\right.\)
\(a,\) Đồng biến \(\Leftrightarrow m+4>0\Leftrightarrow m>-4\)
Nghịch biến \(m+4< 0\Leftrightarrow m< -4\)
\(b,A\left(-1;2\right)\in\left(d\right)\Leftrightarrow-m-4-m+6=2\Leftrightarrow m=0\)
\(\Leftrightarrow y=4x+6\)

gọi hs y=(m+4)x-m+6 là (d)
hàm số (d) đồng biến <=> a>0
<=> m+4>0
<=> m>-4
vậy m>-4 thì (d) đồng biến
hàm số (d) nghịch biến <=> a<0
<=> m+4<0
<=> m<-4
vậy m<-4 thì (d) nghịch biến
3. Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\dfrac{x+1}{x+3m}\) nghịch biến trên khoảng(6;+\(\infty\) )?
4. Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y=\dfrac{x+2}{x+3m}\) đồng biến trên khoảng (-\(\infty\);-6)?
3.
\(y'=\dfrac{3m-1}{\left(x+3m\right)^2}\)
Hàm nghịch biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-1< 0\\-3m\le6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< \dfrac{1}{3}\\m\ge-2\end{matrix}\right.\)
\(\Rightarrow-2\le m< \dfrac{1}{3}\Rightarrow m=\left\{-2;-1;0\right\}\)
4.
\(y'=\dfrac{3m-2}{\left(x+3m\right)^2}\)
Hàm đồng biến trên khoảng đã cho khi:
\(\left\{{}\begin{matrix}3m-2>0\\-3m\ge-6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m>\dfrac{2}{3}\\m\le2\end{matrix}\right.\)
\(\Rightarrow\dfrac{2}{3}< m\le2\Rightarrow m=\left\{1;2\right\}\)
Cho hàm số bậc nhất y=(m-2)x+ 5
a) Tìm các giá trị của m để hàm số y là hàm đồng biến
b) Tìm các giá trị của m để hàm số ý là hàm nghịch biến
a) Hàm số đồng biến trên R\(\Rightarrow a>0\Rightarrow m-2>0\Rightarrow m>2\)
b) Hàm số nghịch biến trên R
\(\Leftrightarrow a< 0\Rightarrow m-2< 0\Rightarrow m< 2\)