Trong không gia Oxyz, cho đường thẳng ∆ vuông góc với mặt phẳng α : x + 2 z + 3 = 0 . Một vectơ chỉ phương của ∆ là
A. b → = 2 ; - 1 ; 0
B. v → = 1 ; 2 ; 3
C. a → = 1 ; 0 ; 2
D. u → = 2 ; 0 ; - 1
Trong không gian Oxyz, cho mặt phẳng ( α ) : 3 x + y + z = 0 và đường thẳng △ : x - 3 1 = y + 4 - 2 = z - 1 2 . Phương trình của đường thẳng d nằm trong mặt phẳng ( α ) , cắt và vuông góc với đường thẳng △ là
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 2 2 = z - 3 3 và mặt phẳng ( α ) : x + y - z - 2 = 0 . Trong các đường thẳng sau, đường thẳng nào nằm trong mặt phẳng ( α ) : x + y - z - 2 = 0 , đồng thời vuông góc và cắt đường thẳng d?
A. ∆ 3 : x - 5 3 = y - 2 - 2 = z - 5 1
B. ∆ 1 : x + 2 - 3 = y + 4 2 = z + 4 - 1
C. ∆ 2 : x - 2 1 = y - 4 - 2 = z - 4 3
D. ∆ 4 : x - 1 3 = y - 1 - 2 = z 1
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 2 2 = z - 3 1 và mặt phẳng (α): x+y-z-2=0. Trong các đường thẳng sau, đường thẳng nào nằm trong mặt phẳng (α), đồng thời vuông góc và cắt đường thẳng d?
Chọn C
Phương trình tham số của đường thẳng
I ∈ d => I (1+t;2+2t;3+t)
I ∈ (α) => 1 + t + 2 + 2t – (3 + t) -2 = 0 ó t = 1 => I (2;4;4).
Đường thẳng cần tìm qua điểm I (2;4;4), nhận một VTCP là nên có PTTS
Kiểm tra , thấy A (5;2;5) thỏa mãn phương trình (*). Vậy chọn C.
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 2 2 = z - 3 1 và mặt phẳng (α): x + y -z – 2 = 0. Trong các đường thẳng sau, đường thẳng nào nằm trong mặt phẳng (α), đồng thời vuông góc và cắt đường thẳng d?
A . ∆ 2 : x - 2 1 = y - 4 - 2 = z - 4 3
B . ∆ 4 : x - 1 3 = y - 1 - 2 = z 1
C . ∆ 3 : x - 5 3 = y - 2 - 2 = z - 5 1
D . ∆ 1 : x + 2 - 3 = y + 4 2 = z + 4 - 1
Chọn C
Phương trình tham số của đường thẳng
I ∈ d => I (1 + t; 2 + 2t; 3+ t), I ∈ (α) => 1 + t + 2 + 2t – (3 + t) - 2 = 0 ó t = 1 => I (2; 4; 4)
Vectơ chỉ phương của d là
Vectơ chỉ pháp tuyến của (α) là
Ta có
Đường thẳng cần tìm qua điểm I (2; 4; 4), nhận một VTCP là nên có
Kiểm tra A (5; 2; 5) ∈ Δ3 (với t = -1) , thấy A (5; 2; 5) thỏa mãn phương trình (*)
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 2 2 = z - 3 1 và mặt phẳng
( α ) : x + y - z - 2 = 0 . Trong các đường thẳng sau, đường thẳng nào nằm trong mặt phẳng ( α ) , đồng thời vuông góc và cắt đường d?
A. ∆ 3 : x - 2 3 = y - 5 - 2 = z - 2 1
B. ∆ 1 : x + 2 - 3 = y + 4 2 = z + 4 - 1
C. ∆ 2 : x - 2 1 = y - 4 - 2 = z - 4 3
D. ∆ 4 : x - 1 3 = y - 1 - 2 = z 1
Đáp án A
Phương pháp:
Gọi đường thẳng cần tìm là d’
Tìm tọa độ điểm A.
n d ' → = u d → ; n ( α ) → là 1 VTCP của đường phẳng d’
Cách giải:
Gọi d’ là đường thẳng cần tìm,
Ta có
=> A (2;4;4)
là một VTCP của d'
Kết hợp với d’ qua A(2;4;4)
Trong không gian với trục tọa độ Oxyz, cho đường thẳng
∆ : x - 1 2 = y - 1 = z + 2 3 và mặt phẳng ( α ): x-2y+2z-3=0.
Đường thẳng đi qua O, vuông góc với ∆ và song song với
mặt phẳng ( α ) có phương trình
Trong không gian Oxyz, cho đường thẳng d : x - 1 1 = y - 2 2 = z - 3 1 và mặt phẳng ( α ) : x + y + z - 2 = 0 Đường thẳng nằm trong mặt phẳng ( α ) , đồng thời vuông góc và cắt đườn thẳng d có phương trình là
Trong không gian với trục tọa độ Oxyz, cho đường thẳng Δ : x − 1 2 = y − 1 = z + 2 3 và mặt phẳng ( α ) : x − 2 y + 2 z − 3 = 0 . Đường thẳng đi qua O, vuông góc với ∆ và song song với mặt phẳng ( α ) có phương trình
A. x 4 = y − 1 = z − 3
B. x 4 = y 1 = z − 3
C. x − 1 4 = y − 1 = z − 3
D. x 4 = y 1 = z − 1 − 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x + y - z - 2 = 0 và đường thẳng d : x + 1 2 = y - 1 1 = z - 2 1 Phương trình nào dưới đây là phương trình mặt phẳng chứa đường thẳng (d) và vuông góc với mặt phẳng α
A. x+y-z+2=0
B. 2x-3y-z+7=0
C. x+y+2z-4=0
D. 2x-3y-z-7=0
Đáp án B
Phương pháp giải:
Ứng dụng của tích có hướng để tìm vectơ pháp tuyến của mặt phẳng. Phương trình mặt phẳng đi qua M ( x 0 ; y 0 ; z 0 ) và có VTPT
Lời giải:
Vậy phương trình mặt phẳng (P): 2x-3y-z+7=0