Cho tứ diện ABCD. Trên các cạnh AB và AC lần lượt lấy các điểm M và N sao cho A M A B = A N A C . Tìm giao tuyến của hai mặt phẳng (DBC) và (DMN).
Cho tứ diện đều ABCD có cạnh bằng a, trên các cạnh AB, AC, AD lần lượt lấy các điểm M, N, P sao cho AB = 2 AM, AN= 2NC, AD = 2 AP. Thể tích của khối tứ diện AMNP là:
A. a 3 2 72
B. a 3 3 48
C. a 3 2 48
D. a 3 2 12
Cho tứ diện ABCD. Gọi P và Q lần lượt là trung điểm của các cạnh AB và CD. Trên các cạnh AC và BD lần lượt ta lấy các điểm M, N sao cho
A M A C = B N B D = k ( k > 0 )
Chứng minh rằng ba vectơ P Q → , P M → , P N → đồng phẳng.
Cho tứ diện ABCD. Trên các cạnh AB và AC lần lượt lấy các điểm M và N sao cho \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\). Tìm giao tuyến của hai mặt phẳng (DBC) và (DMN) ?
) Cho hình bình hành ABCD (AB>BC). Trên các cạnh AB và DC lần lượt lấy hai điểm M và N sao cho AM = CN; (M và N không trùng với trung điểm của AB và CD).
a) Tứ giác BMDN là hình gì? Vì sao?
b) Chứng minh rằng các đường thẳng AC, BD, MN cùng cắt nhau tại một điểm
c) Lấy điểm E đối xứng với D qua A. Gọi P là trung điểm của AB. Chứng minh E và C đối xứng với nhau qua P.
a: Xét tứ giác BMDN có
BM//DN
BM=DN
Do đó: BMDN là hình bình hành
Câu 1 :Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD và trên cạnh BC lấy điểm P sao cho BP = 2PC a) Tìm giao tuyến của (MNP) với (ABD) b) Tìm giao điểm của AD với (MNP). Từ đó xác định thiết diện của (MNP) với tứ diện
Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm các cạnh AB và AC. E là điểm trên cạnh CD với ED=3EC. Thiết diện tạo bởi mp(MNE) và tứ diện ABCD là:
A. Tam giác MNE
B. Tứ giác MNEH với H là điểm bất kì trên cạnh BD
C. Hình bình hành MNEH với H là điểm trên cạnh BD mà EH//BC
D. Hình thang MNEH với H là điểm trên cạnh BD mà EH//BC
Đáp án C
Xét (MNE) và (BCD) có:
E là điểm chung
BC // MN ⇒ BC // (MNE)
⇒ Giao tuyến của 2 mặt phẳng là đường thẳng d đi qua E và song song BC
d cắt BD tại H
⇒ MNEH là thiết diện cần tìm
Xét tứ giác MNEH có MN // EH ( // BC)
⇒ MNEH là hình thang
Cho tứ diện ABCD. Gọi P và Q lần lượt là trung điểm của các cạnh AB và CD. Trên các cạnh AC và BD ta lần lượt lấy các điểm M, N sao cho :
\(\dfrac{AM}{AC}=\dfrac{BN}{BD}=k,\left(k>0\right)\)
a: Xét tứ giác AIMJ có
\(\widehat{AIM}=\widehat{AJM}=\widehat{JAI}=90^0\)
=>AIMJ là hình chữ nhật
b: AIMJ là hình chữ nhật
=>MI//AJ và MI=AJ
MI=AJ
MN=MI
Do đó: MN=AJ
MI//AJ
N\(\in\)MI
Do đó: MN//JA
Xét tứ giác AMNJ có
AJ//MN
AJ=MN
Do đó: AMNJ là hình bình hành
Bài 1:Cho hình chóp S.ABCD trên SA và SB ta lấy 2 điểm M,N sao cho MN không song song với AB và trong mp (ABC) lấy điểm O.Xác định giao điểm của (MNO) và các đường thẳng AB,BC,AC,SC.
Bài 2: Cho tứ diện ABCD. Gọi M và N là hai điểm lần lượt trên AC và AD. O là 1 điểm bên trong tam giác BCD. Tìm giao điểm của
a) Đường thẳng MN và mp (ABO)
b) Đường thẳng AO và mp (BMN)
Bài 3: Cho tứ diện ABCD. Trên AC và AD lần lượt lấy điểm M và N sao cho MN không song song với CD. Gọi O là điểm bên trong tam giác BCD. Tìm giao điểm của BC và BD với mp (OMN)