Phân tích thành nhân tử: a 3 – a 2 x – ay + xy
phân tích thành nhân tử
\(a^3 -a^2 x-ay+xy\)
\(x^2 -2xy+x-2y\)
\(x^2 -2x+2y-xy\)
`a^3-a^2 x -ay+xy`
`=a^2(a-x)-y(a-x)`
`=(a-x)(x^2-y)`
`x^2-2xy+x-2y`
`= (x^2+x)-(2xy+2y)`
`=x(x+1)-2y(x+1)`
`=(x+1)(x-2y)`
`x^2-2x+2y-xy`
`=x(x-2) + y(2-x)`
`=x(x-2)-y(x-2)`
`=(x-2)(x-y)`
1. Phân tích thành nhân tử:
a3 - a2x - ay + xy
=(a^3-a^2x)-(ay-xy)
=a^2(a-x)-y(a-x)
=(a^2-y)(a-x)
\(a^3-a^2x-ay+xy\)
\(=\left(a^3-a^2x\right)-\left(ay-xy\right)\)
\(=a^2\left(a-x\right)-y\left(a-x\right)\)
\(=\left(a^2-y\right)\left(a-x\right)\)
Phân tích đa thức thành nhân tử)
a) 5x - 5y + ax - ay
b) a3 - a2x - ay + xy
c) xy ( x+ y ) + yz ( y+ z ) + xz ( x + z ) + 2xyz
a)
5x-5y+ax-ay = 5(x-y) +a(x-y) = (x-y)(5+a)
b) a^3 -a^2x-ay+xy = a^2(a-x) -y(a-x) = (a-x)(a^2-y)
c) xy(x+y) +yz(y+z) +xz(x+z) +2xyz = x^2.y+xy^2 +y^2.z+xz^2 +x^2.z+xz^2 +2xyz
= (x^2.y+x^2.z)+(xy^2+xz^2+2xyz)+(y^2.z+yz^2) = x^2(y+z) +x.(y+z)^2 +yz(y+z)
=(y+z)(x^2+x+yz)
PHÂN TÍCH THÀNH NHÂN TỬ
X^2-X-Y^2-Y
X^2-2XY+Y^2-Z^2
5X-5Y+ax-ay
a^3-a^2x-ay+xy
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
1 ) \(x^2-x-y^2-y=\left(x^2-y^2\right)+\left(-x-y\right)=\left(x+y\right)\left(x-y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)
2 ) \(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y+z\right)\left(x-y-z\right)\)
3 ) \(5x-5y+ax-ay=5.\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(5+a\right)\)
4 ) \(a^3-a^2x-ay+xy=a^2.\left(a-x\right)-y.\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)
5 ) \(xy.\left(x+y\right)+yz.\left(y+z\right)+xz.\left(x+z\right)+2xyz\)
\(=xy.\left(x+y\right)+y^2z+yz^2+x^2z+xz^2+xyz+xyz\)
\(=xy.\left(x+y\right)+\left(y^2z+xyz\right)+\left(yz^2+xz^2\right)+\left(x^2z+xyz\right)\)
\(=xy.\left(x+y\right)+yz.\left(x+y\right)+z^2.\left(x+y\right)+xz.\left(x+y\right)\)
\(=\left(x+y\right)\left(xy+yz+z^2+xz\right)=\left(x+y\right)\left[\left(xy+xz\right)+\left(yz+z^2\right)\right]\)
\(=\left(x+y\right)\left[x.\left(y+z\right)+z.\left(y+z\right)\right]=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
phân tích thành nhân tử
a) x3 - 2x2 + 2x - 13
b) x2y + xy + x +1
c) ax + by + ay + bx
d) x2 - ( a+b)x + ab
hộ ạ , cảm ơn
b) Ta có: \(x^2y+xy+x+1\)
\(=xy\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(xy+1\right)\)
c) Ta có: \(ax+by+ay+bx\)
\(=a\left(x+y\right)+b\left(x+y\right)\)
\(=\left(x+y\right)\left(a+b\right)\)
d) Ta có: \(x^2-\left(a+b\right)x+ab\)
\(=x^2-ax-bx+ab\)
\(=x\left(x-a\right)-b\left(x-a\right)\)
\(=\left(x-a\right)\left(x-b\right)\)
Phân tích thành nhân tử : a) (xy+4)^2 - 4(x+y)^2
b) (ab-xy)^2 - (bx-ay)^2
c) (x^2 +8x-34)^2 - (3x^2-8x-2)^2
Mấy bài này khá đơn giản .
Bạn chỉ cần áp dụng hằng đẳng thức \(x^2-y^2=\left(x+y\right)\left(x-y\right)\) là được nhs =))
a)
\(\left(xy+4\right)^2-4\left(x+y\right)^2\)
\(=\left(xy+4\right)^2-\left[2\left(x+y\right)\right]^2\)
\(=\left[xy+4-2\left(x+y\right)\right]\left[xy+4+2\left(x+y\right)\right]\)
\(=\left(xy+4-2x-2y\right)\left(xy+4+2x+2y\right)\)
\(=\left[y\left(x-2\right)-2\left(x-2\right)\right]\left[y\left(x+2\right)+2\left(x+2\right)\right]\)
\(=\left(x-2\right)\left(y-2\right)\left(x+2\right)\left(y+2\right)\)
b)
\(\left(ab-xy\right)^2-\left(bx-ay\right)^2\)
\(=\left(ab-xy-bx+ay\right)\left(ab-xy+bx-ay\right)\)
\(=\left[a\left(b+y\right)-x\left(b+y\right)\right]\left[a\left(b-y\right)+x\left(b-y\right)\right]\)
\(=\left(b+y\right)\left(a-x\right)\left(a+x\right)\left(b-y\right)\)
c)
\(=\left(x^2+8x-34+3x^2-8x-2\right)\left(x^2+8x-34-3x^2+8x+2\right)\)
\(=\left(4x^2-36\right)\left(-2x^2+16x-32\right)\)
\(=\left(2x-6\right)\left(2x+6\right)\left(-2\right)\left(x^2-8x+16\right)\)
\(=\left(2x-6\right)\left(2x+6\right)\left(-2\right)\left(x-4\right)^2\)
Bạn liểm tra lại nhs
Mk lm hay nhấm lắm
=))
Phân tích đa thức thành nhân tử
1. x^2-x-y^2-y
2. x^2-2xy+y^2-z^2
3. 5x-5y+ax-ay
4. a^3-a^2x-ay+xy
5. 4x^2-y^2+4x+1
6. x^3-x+y^3-y
1) x2 - x - y2 - y = (x - y)(x + y) - (x + y) = (x - y - 1)(x + y)
2. x2 - 2xy + y2 - z2 = (x - y)2 - z2 = (x - y - z)(x - y + z)
3. 5x - 5y + ax - ay = 5(x - y) + a(x - y) = (a + 5)(x - y)
4. a3 - a2x - ay + xy = a2(a - x) - y(a - x) = (a2 - y)(a - x)
5. 4x2 - y2 + 4x + 1 = (2x + 1)2 - y2 = (2x + 1 - y)(2x + y + 1)
6. x3 - x + y3 - y = (x + y)(x2 - xy + y2) - (x + y) = (x + y)(x2 - xy + y2 - 1)
Trả lời:
1, x2 - x - y2 - y
= ( x2 - y2 ) - ( x + y )
= ( x - y ) ( x + y ) - ( x + y )
= ( x + y ) ( x - y - 1 )
2, x2 - 2xy + y2 - z2
= ( x2 - 2xy + y2 ) - z2
= ( x - y )2 - x2
= ( x - y - z ) ( x - y + z )
3, 5x - 5y + ax - ay
= ( 5x + ax ) - ( 5y + ay )
= x ( 5 + a ) - y ( 5 + a )
= ( 5 + a ) ( x - y )
= ( 5 + a ) ( x - y )
4, a3 - a2x - ay + xy
= ( a3 - a2x ) - ( ay - xy )
= a2 ( a - x ) - y ( a - x )
= ( a - x ) ( a2 - y )
5, 4x2 - y2 + 4x + 1
= ( 4x2 + 4x + 1 ) - y2
= ( 2x + 1 )2 - y2
= ( 2x + 1 - y ) ( 2x + 1 + y )
6, x3 - x + y3 - y
= ( x3 + y3 ) - ( x + y )
= ( x + y ) ( x2 - xy + y ) - ( x + y )
= ( x + y ) ( x2 - xy + y - 1 )
phân tích đa thức sau thành nhân tử
a) a^2-a^2x-ay+xy
b)
Giúp mình với T.T
Phân tích thành nhân tử:
a) 4(xy+4)^2-16(x+y)^2
b) 4(x^2+y^2) - 8(x-ay) - 4(a^2-1)
phân tích các đa thức sau thành nhân tử bằng phương pháp nhóm nhiều hạng tử.
a,x^ - x -y^2 -y
b, 9x + y^2 -16z^2 + 6xy
c, a^3 - a^2x - ay + xy
d, 2x^2 - 8y^2 + 3x + 6y
e, xy. ( x + y) + yz .( y + z )+ xz . (x+ z) + 2xyz
x2 - x - y2 - y
= (x - y)(x + y) - (x + y)
= (x + y)(x - y - 1)
***
9x2 + y2 - 16z2 + 6xy
= (3x + y)2 - (4z)2
= (3x + y - 4z)(3x + y + 4z)
***
a3 - a2x - ay + xy
= a2(a - x) - y(a - x)
= (a - x)(a2 - y)
***
2x2 - 8y2 + 3x + 6y
= 2(x2 - 4y2) + 3(x + 2y)
= 2(x - 2y)(x + 2y) + 3(x + 2y)
= (x + 2y)(2x - 4y + 3)
***
xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
= xy(x + y + z) + yz(x + y + z) + xz(x + z)
= y(x + y + z)(x + z) + xz(x + z)
= (x + z)(xy + y2 + yz + xz)
= (x + z)[y(x + y) + z(x + y)]
= (x + z)(x + y)(y + z)