Tớ đang gấp , giúp mình nhé
a^2+b^2+c^2+3=2(a+b+c) CMR:a=b=c=1
Cho a^2+b^2+c^2+3=2(a+b+c). Chứng minh a=b=c=1
Giúp mình với. Mình đang cần gấp lắm !!!!
a2+b2+c2+3=2a+2b+2c
=>a2-2a+1+b2-2b+1+c2-2c+1=0 (chuyển vế và tách 3=1+1+1)
<=>(a-1)2+(b-1)2+(c-1)2=0 (1)
vì (a-1)2>=0
(b-1)2 >=0
(c-1)2>=0
do đó (a-1)2+(b-1)2+(c-1)2>=0 với mọi a,b,c (2)
từ (1) và (2)=>a-1=b-1=c-1=0
=>a=b=c=1 (dpcm)
các cậu ơi giúp tớ với,tớ đang cần gấp.
đề bài:
chứng minh a2 + b2 +c2 >= 2 ( a + b + c) - 3
\(a^2+b^2+c^2\ge2\left(a+b+c\right)-3\)
\(\Leftrightarrow a^2+b^2+c^2\ge2a+2b+2c-3\)
\(\Leftrightarrow a^2+b^2+c^2-2a-2b-2c+3\ge0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)\ge0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (luôn đúng)
Vậy \(a^2+b^2+c^2\ge2\left(a+b+c\right)-3\)
Cho \(a^2+b^2+c^2=a^3+b^3+c^3=1\)
Tính giá trị biểu thức: \(C=a^2+b^9+c^{1945}\)
Mình đang cần lời giải (chi tiết) và đang gấp. Xin giúp mình. Cảm ơn nhiều
Không mất tính tổng quát ta giả sử \(a\ge b\ge c\)
Vì \(a^2+b^2+c^2=1\Rightarrow lal,lbl,lcl\le1\)
\(\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}}\Rightarrow a^2+b^2+c^2\ge a^3+b^3+c^3=1\)
Dấu = xảy ra khi \(\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}}\)
Mà theo giả thuyết thì \(\hept{\begin{cases}a\ge b\ge c\\a^2+b^2+c^2=1\end{cases}\Rightarrow\hept{\begin{cases}a=1\\b=c=0\end{cases}}}\)
Vậy C = 1
Tương tự với các trường hợp giả sử về a,b,c khác ta luôn có giá trị C = 1
Giả sử\(a\ge b\ge c\)(ko mất tính tổng quát) .Ta có :\(\hept{\begin{cases}a^2+b^2+c^2=1\\a^2;b^2;c^2\ge0\end{cases}\Rightarrow a^2;b^2;c^2\le1\Rightarrow|a|;|b|;|c|\le1\Rightarrow\hept{\begin{cases}a^2\ge a^3\\b^2\ge b^3\\c^2\ge c^3\end{cases}\Rightarrow}a^2+b^2+c^2\ge a^3+b^3+c^3=1}\)
\(\Rightarrow\hept{\begin{cases}a^2=a^3\\b^2=b^3\\c^2=c^3\end{cases}\Rightarrow\hept{\begin{cases}a,b,c\in\left\{0;1\right\}\\a^2+b^2+c^2=1\\a\ge b\ge c\end{cases}}\Rightarrow a=1;b=c=0\Rightarrow a^2+b^9+c^{1945}=1}\)
Ta có:
\(a^2+b^2+c^2=1\Rightarrow a^2,b^2,c^2\le1\)
\(\Rightarrow a,b,c\le1\)
Ta lại có: \(a^2+b^2+c^2=a^3+b^3+c^3\)
\(\Leftrightarrow a^3-a^2+b^3-b^2+c^3-c^2=0\)
\(\Leftrightarrow a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)=0\)
Mà \(a^2\left(a-1\right)+b^2\left(b-1\right)+c^2\left(c-1\right)\le0\)với mọi a,b,c (vì \(a^2,b^2,c^2\le0\)và\(a,b,c\le1\))
Suy ra ta phải có: \(a^2\left(a-1\right)=b^2\left(b-1\right)=c^2\left(c-1\right)=0\)
Kết hợp gt suy ra 3 số a,b,c phải là một số bằng 1 và 2 số còn lại bằng 0.
Vì a,b,c vai trò như nhau nên giả sử \(a=1\Rightarrow b=c=0\)
Khi đó \(C=a^2+b^9+c^{1945}=1+0+0=1\)
Mình thật sự đang cần lời giải gấp lắm. Please giúp với:
Cho a^2+b^2+c^2 = a^3+b^3+c^3 = 1 Tính giá trị biểu thức: C = a^2+b^9+c^1945
Cho \(a,b,c\)thỏa mãn :\(a^2+b^2+c^2=3\)
\(cmr:a^3\left(b+c\right)+b^3\left(c+a\right)+c^3\left(a+b\right)\le6\)
giải được tick liền ,đang cần gấp
Biến đổi VT=\(3\left(ab+bc+ca\right)-abc\left(a+b+c\right)=3\left(ab+bc+ca\right)-\frac{\left(ab+bc+ca\right)^2-a^2b^2-b^2c^2-c^2a^2}{2}\)
\(\le3t-\frac{t^2}{2}+\frac{3}{2}=\frac{12-\left(t-3\right)^2}{2}\le6\)(t=ab+bc+ca)
(a^2b^2+b^2c^2+c^2a^2 nhỏ hơn hoặc bằng 3)
a) Với a,b,c > 0. Cm: (a+b+c)*(1/a+1/b+1/c) >= 9
b) x + 1/x >=2 (x>0)
c) 2*(a^2 + b^2) >= (a+b)^2
d) 3*(a^2 + b^2 + c^2) >= (a+b+c)^2 >= 3*(ab+bc+ca)
MÌNH ĐANG CẦN GẤP ! CÁC BẠN GIÚP MÌNH VỚI ! CẢM ƠN Ạ
Mình học lớp 7 nên chỉ làm được phần b, thôi
b, * Nếu x=1 thì:
1+1=2
* Nếu x=2 thì:
2+ 1/2 >2
* Nếu x>2
=> x + 1/x > 2 ( vì 1/x là số dương )
Vậy x + 1/x >=2 (x>0)
Phần A mình tìm được ở trang này nè http://olm.vn/hoi-dap/question/162099.html
http://olm.vn/hoi-dap/question/170133.html
phần c
a) a^2 ( b - c ) + b^2 ( c - a ) + c^2 ( a - b )
b) ab ( a - b ) - ac ( a - c ) + bc ( 2^a + c - b )
c) ( a - x ) y^3 - ( a - y ) x^3 + ( x - y ) a^3
CÁC BẠN ƠI LÀM GIÚP MÌNH MÌNH ĐANG CẦN GẤP
Cho a-b-c=2
Tính M=\(\frac{a^3-b^3-c^3-3abc}{\left(a+b\right)^2+\left(b-c\right)^2+\left(c+a\right)^2}\)
Giúp mình nhé mình đang cần gấp. Thanks các bạn
\(=\frac{\left(a-b\right)^3-c^3+3ab\left(a-b\right)-3abc}{a^2+2ab+b^2+b^2-2bc+c^2+c^2+2ca+a^2}\)
\(=\frac{\left(a-b-c\right)\left(a^2-2ab+b^2+ac-bc+c^2\right)+3ab\left(a-b-c\right)}{\left(a-b-c\right)^2+a^2+b^2+c^2}\)
\(=\frac{\left(\cdot a-b-c\right)\left(a^2+b^2+c^2+ac+ab-bc\right)}{4+a^2+b^2+c^2}\)
\(=\frac{2a^2+2b^2+2c^2+2ab-2bc+2ca}{4+a^2+b^2+c^2}\)
\(=\frac{\left(a-b-c\right)^2+a^2+b^2+c^2}{4+a^2+b^2+c^2}=1\)
k mk nha
cho các số a,b,c thoả mãn a+b+c=3/2
CMR a2+b2+c2=3/4
momg các bạn giải giúp mình , mình đang rất gấp