Cho tam giác ABC có AB=AC=BC, phân giác BD và CE cắt nhau tại O
Tính B O C ^
A. 60 °
B. 80 °
C. 120 °
D. 100 °
Cho tam giác ABC có góc A=60 độ .Kẻ tia phân giác BD,CE( E thuộc AB ;D thuộc AC)
BD và CE cắt nhau tại O. Tia phân giác của góc BOC cắt BC tại F.
Chứng minh rằng
a) OD=OE=OF
b)tam giác DEF là tam giác đều
Cho tam giác ABC có A=60 độ. tia phân giác ^B và ^C cắt cạnh AC và AB tại D và E. cạnh BD cắt Cạnh Ce tại điểm o. tia phân giác ^BOC cắt BC tại F.C/m:
a/ OD=OE=OF
b/ tam giác DEF đều
cho tam giác ABC có góc A= 60. Vẽ tia phân giác BD và CE(D thuộc AC; E thuộc AB)cắt nhau tại O
a) Tính góc BOC.
b) Vẽ phân giác ngoài tại B và C cắt nhau tại I. Tính góc BIC.
a)\(\Delta ABC\)có \(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^o\) (tổng 3 góc trong tam giác)
=>\(60^o+\widehat{ABC}+\widehat{ACB}=180^o\)=>\(\widehat{ABC}+\widehat{ACB}=120^o\)
BD là tia phân giác của góc ABC => \(\widehat{ABD}=\widehat{DBC}=\frac{1}{2}.\widehat{ABC}\)
CE là tia phân giác của góc ACB => \(\widehat{ACE}=\widehat{ECB}=\frac{1}{2}.\widehat{ACB}\)
=>\(\widehat{DBC}+\widehat{ECB}=\frac{1}{2}.\widehat{ABC}+\frac{1}{2}.\widehat{ACB}=\frac{1}{2}\left(\widehat{ABC}+\widehat{ACB}\right)=\frac{1}{2}.120=60^o\)
\(\Delta BOC\) có: \(\widehat{DBC}+\widehat{BOC}+\widehat{ECB}=180^o\) (tổng 3 góc trong tam giác)
=>\(\widehat{BOC}+60^o=180^o\Rightarrow\widehat{BOC}=120^o\)
b) Góc ngoài tại đỉnh B của tam giác ABC kề bù với góc ABC <=>\(\widehat{ABC}+\widehat{CBx}=180^o\)
Góc ngoài tại đỉnh C của tam giác ABC kề bù với góc ACB<=>\(\widehat{ACB}+\widehat{BCy}=180^o\)
=>\(\widehat{ABC}+\widehat{CBx}+\)\(\widehat{ACB}+\widehat{BCy}=360^o\)=>\(\widehat{CBx}+\widehat{BCy}+120^o=360^o\)
=>\(\widehat{CBx}+\widehat{BCy}=240^o\)
BI là tia phân giác của góc CBx => \(\widehat{BCI}=\widehat{IBx}=\frac{1}{2}.\widehat{CBx}\)
CI là tia phân giác của góc BCy => \(\widehat{BCI}=\widehat{ICy}=\frac{1}{2}.\widehat{BCy}\)
=>\(\widehat{CBI}+\widehat{BCI}=\frac{1}{2}.\widehat{CBx}+\frac{1}{2}.\widehat{BCy}=\frac{1}{2}\left(\widehat{CBx}+\widehat{BCy}\right)=\frac{1}{2}.240^o=120^o\)
\(\Delta BCI\) có: \(\widehat{CBI}+\widehat{BCI}+\widehat{BIC}=180^o\) (tổng 3 góc trong tam giác)
=>\(120^o+\widehat{BIC}=180^o\Rightarrow\widehat{BIC}=60^o\)
Vậy ............................
Câu 1: Cho tam giác ABC cắt tia phân giác góc B, C cắt nhau tại I. Qua I kẻ đường thẳng song song với AB cắt AC, BC lần lượt ở D và E. Chứng minh DE=AD+BE
Câu 2:Cho tam giác ABC góc A=60, phân giác BD, CE cắt nhau ở O
Chứng minh: BC=BE+CD
Câu 3: Cho tam giác ABC phân giác trong tại B,C cắt nhau ở O, 2 phân giác góc ngoài tại B,C cắt nhau tại I
Chứng minh: 3 điểm A,O,I thẳng hàng
Cho tam giác ABC có AB = BC = CA, phân giác BD và CE cắt nhau tại O.Tính góc BOC ?
A. 60° B. 80° C. 120° D. 100°
Cho tam giác ABC có ∠B= ∠C. Tia phân giác BD (D ∈ AC) và phân giác CE (E ∈ AB) cắt nhau tại O. Từ O kẻ OH ⊥ AC, OK ⊥ AB. Chứng minh :
a)△ABC=△CBE
b) OB = OC
c) OH = OK
Cho tam giác ABC có góc A=600. Kẻ phân giác góc B cắt AC tại D. Phân giác góc C cắt AB tại E, gọi BD cắt CE tại O
a) CM: OD=OE
b) BE+CD=BC
Cho tam giác ABC có góc A bằng 60o, phân giác góc B và C cắt các cạnh AC,AB lần lượt tại D và E, BD và CE cắt nhau tại I. Cmr:ID=IE
Cho tam giác ABC có AB=BC=AC. các tia phân giác BD và CE cắt nhau tại O. Chứng minh rằng:
a) BD vuông góc với BC, CE vuông góc với AB.
b) OA=OB=OC
Cho tam giác ABC có AB = AC = BC, phân giác BD và CE cắt nhau tại O. Chứng minh rằng:
a) BD AC; CE AB.
b) OA = OB = OC.
Tham khảo
ĐÂY LÀ KÍ HIỆU GÓC NHA (^)
Vì 3 tam giác này có 3 góc bằng nhau :
⇒BACˆ×3=180⇒BAC^×3=180 độ
⇒BACˆ=60⇒BAC^=60 độ
⇒ABDˆ=30⇒ABD^=30 độ
⇒ABDˆ+BADˆ⇒ABD^+BAD^ = 90 độ
⇒ΔBAD⇒ΔBAD ⊥ D
⇒BD⇒BD ⊥⊥ ACAC
Vì CE là tia phân giác của BCAˆBCA^
⇒ECAˆ⇒ECA^ =30=30 độ
⇒EACˆ+ECAˆ=90⇒EAC^+ECA^=90 độ
⇒ΔAEC⊥E⇒ΔAEC⊥E
⇒EC⊥AB