Cho elip (E) có phương trình x 2 169 + y 2 25 = 1 với hai tiêu điểm là F 1 , F 2 . Với điểm M bất kì trên (E) thì chu vi tam giác M F 1 F 2 là:
A. 50
B. 36
C. 34
D. Thay đổi phụ thuộc vào vị trí M
trong mặt phẳng với hệ tọa độ Oxy, cho elip(E) có phương trình chính tắc \(\dfrac{x^2}{169}+\dfrac{y^2}{25}=1\)
, với hai tiêu điểm là F1 và F2. Với điểm M bất kì trên (E) thì chu vi tam giác MF1F2 là
Chu vi: \(P=F_1F_2+MF_1+MF_2=2c+2a=2\sqrt{a^2-b^2}+2a=2\sqrt{169-25}+2.13=50\)
a, cho elip (E) có phương trình chính tắc x^2/49+y^2/25=1. tìm toạ độ các giao điểm của (E) với các trục ox,oy và toạ độ các tiêu điểm của (E)
Cho (E) \(\frac{x^2}{169}+\frac{y^2}{25}=1\)
Diện tích hình vuông có các cạnh đều tiếp xúc với elip là
Cho elip \(\left( E \right)\) có phương trình chính tắc \(\frac{{{x^2}}}{{49}} + \frac{{{y^2}}}{{25}} = 1\) .Tìm tọa độ các giao điểm của \(\left( E \right)\) với trục Ox, Oy và tọa độ các tiêu điểm của \(\left( E \right)\).
Từ phương trình chính tắc của (E) ta có: \(a = 7,b = 5 \Rightarrow c = 2\sqrt 6 {\rm{ }}(do{\rm{ }}{{\rm{c}}^2} + {b^2} = {a^2})\)
Vậy ta có tọa độ các giao điểm của (E) với trục Ox, Oy là: \({A_1}\left( { - 7;{\rm{ }}0} \right)\)\({A_2}\left( {7;{\rm{ }}0} \right)\)\({B_1}\left( {0; - {\rm{ 5}}} \right)\)\({B_2}\left( {0;{\rm{ 5}}} \right)\)
Hai tiêu điểm của (E) có tọa độ là: \({F_1}\left( { - 2\sqrt 6 ;0} \right),{F_2}\left( {2\sqrt 6 ;0} \right)\)
Trong mặt phẳng với hệ trục tọa độ Oxy cho elip (E) có phương trình chính tắc \(\dfrac{x^2}{25}+\dfrac{y^2}{9}=1\). Độ dài trục lớn của elip (E) là:
A. 10 B. 25 C. 9 D. 6
Từ phương trình \(\Rightarrow a^2=25\Rightarrow a=5\)
Độ dài trục lớn: \(2a=10\)
Phương trình nào sau đây là phương trình chính tắc của elip?
\(a)\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{64}} = 1\)
b) \(\frac{{{x^2}}}{{64}} - \frac{{{y^2}}}{{64}} = 1\)
c) \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{25}} = 1\)
d) \(\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{64}} = 1\)
Phương trình chính tắc của elip là: c) \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{25}} = 1\).
a) Không là PTCT vì a =b =8
b) Không là PTCT
d) Không là PTCT vì a =5 < b =8.
Cho Elip có phương trình \(\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1\). Tìm tiêu điểm và tiêu cự của elip.
Ta có: \({a^2} = 36,{b^2} = 9 \Rightarrow c = \sqrt {36 - 9} = 3\sqrt 3 \) nên elip có hai tiêu điểm là \({F_1}\left( { - 3\sqrt 3 ;0} \right);{F_2}\left( {3\sqrt 3 ;0} \right)\) và tiêu cự là \({F_1}{F_2} = 2c = 6\sqrt 3 \).
a) Trong mặt phẳng tọa độ Oxy cho đường thẳng (d) có phương trình 2x-3y+1=0
Lập pt đường thẳng(d') qua M(-1',1)và song song với(d)
b)Trong mặt phẳng hệ tọa độ Oxy,cho elip có pt(E):x\(\frac{x^2}{49}+\frac{y^2}{25}=1\)
tính chu vi,diện tích hình chữ nhật của elip
Cho elip có phương trình chính tắc \(\frac{{{x^2}}}{{100}} + \frac{{{y^2}}}{{64}} = 1\). Tìm các tiêu điểm và tiêu cự của elip.
Ta có: \(c = \sqrt {{{100}^2} - {{64}^2}} = 6\). Do đó (E) có hai tiêu điểm là \({F_1}\left( { - 6;0} \right),{F_2}\left( {6;0} \right)\) và có tiêu cự bằng 2c = 12.
Cho biết mỗi đường conic có phương trình dưới đây là đường conic dạng nào ( elip, hypebol, parabol) và tìm tọa độ tiêu điểm của đường conic đó.
a) \({y^2} = 18x\)
b) \(\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{25}} = 1\)
c) \(\frac{{{x^2}}}{9} - \frac{{{y^2}}}{{16}} = 1\)
a) Đây là một parabol. Tiêu điểm của parabol có tọa độ là: \(F\left({\frac{9}{2};0} \right)\).
b) Đây là một elip. Tiêu điểm của elip có tọa độ là: \(\left\{ \begin{array}{l}{F_1}\left( { - \sqrt {{a^2} - {b^2}} ;0} \right) = \left( { - \sqrt {39} ;0} \right)\\{F_2}\left( {\sqrt {{a^2} - {b^2}} ;0} \right) = \left( {\sqrt {39} ;0} \right)\end{array} \right.\)
c) Đây là một hyperbol. Tiêu điểm của hypebol có tọa độ là: \(\left\{ \begin{array}{l}{F_1}\left( { - \sqrt {{a^2} + {b^2}} ;0} \right) = \left( { - 5;0} \right)\\{F_2}\left( {\sqrt {{a^2} + {b^2}} ;0} \right) = \left( {5;0} \right)\end{array} \right.\)