Xét mệnh đề P : ∃ x ∈ ℝ : 2 x − 3 < 0 " . Mệnh đề phủ định P ¯ của mệnh đề P là:
A. " ∀ x ∈ R ,2 x − 3 < 0 "
B. " ∃ x ∈ R ,2 x − 3 > 0 "
C. " ∀ x ∈ R ,2 x − 3 ≥ 0 "
D. " ∀ x ∈ R ,2 x − 3 ≤ 0 "
Xét mệnh đề P: " ∀ x ∈ ℝ , x 2 + 1 > 0 " . Mệnh đề phủ định P ¯ của mệnh đề P là:
A. " ∀ x ∈ ℝ , x 2 + 1 ≤ 0 "
B. " ∃ x ∈ ℝ , x 2 + 1 ≤ 0 "
C. " ∀ x ∈ ℝ , x 2 + 1 > 0 "
D. " ∃ x ∈ ℝ , x 2 + 1 < 0 "
Xét mệnh đề P: " ∃ x ∈ ℝ : 3 x + 1 < 0 " Mệnh đề phủ định P ¯ của mệnh đề P là
A . " ∀ x ∈ ℝ : 3 x + 1 ≤ 0 "
B . " ∃ x ∈ ℝ : 3 x + 1 > 0 "
C . " ∀ x ∈ ℝ : 3 x + 1 ≥ 0 "
D . " ∀ x ∈ ℝ : 3 x + 1 ≤ 0 "
Cho mênh đề “ ∀ x ∈ ℝ , x 2 + x ≥ − 1 4 ”. Lập mệnh đề phủ định của mệnh đề A và xét tính đúng sai của nó
A. A ¯ : " ∃ x ∈ ℝ , x 2 + x ≥ − 1 4 " Đây là mệnh đề đúng
B. A ¯ : " ∃ x ∈ ℝ , x 2 + x ≤ − 1 4 " Đây là mệnh đề đúng
C. A ¯ : " ∃ x ∈ ℝ , x 2 + x < − 1 4 " Đây là mệnh đề đúng
D. A ¯ : " ∃ x ∈ ℝ , x 2 + x ≥ − 1 4 " Đây là mệnh đề sai
Tìm mệnh đề phủ định của mệnh đề P : " ∀ x ∈ ℝ , 2 x − 9 = 0 "
A. P ¯ : " ∀ x ∈ ℝ , 2 x − 9 < 0 "
B. P ¯ : " ∀ x ∈ ℝ , 2 x − 9 ≠ 0 "
C. P ¯ : " ∃ x ∈ ℝ , 2 x − 9 ≥ 0 "
D. P ¯ : " ∃ x ∈ ℝ , 2 x − 9 ≠ 0 "
Đáp án D
Mệnh đề phủ định của mệnh đề P : " ∀ x ∈ ℝ , 2 x − 9 = 0 " là P ¯ : " ∃ x ∈ ℝ , 2 x − 9 ≠ 0 "
Cho mệnh đề “ ∀ x ∈ ℝ , x 2 < x ”. Trong các mệnh đề sau, mệnh đề nào là phủ định của mệnh đề?
A. ∃ x ∈ ℝ , x 2 < x
B. ∃ x ∈ ℝ , x 2 ≥ x
C. ∀ x ∈ ℝ , x 2 < x
D. ∀ x ∈ ℝ , x 2 ≥ x
Xét mệnh đề P : " ∀ x ∈ ℝ : x 2 − x + 2 > 0 " . Mệnh đề phủ định P ¯ của P là:
A. " ∀ x ∈ ℝ : x 2 − x + 2 ≤ 0 "
B. " ∃ x ∈ ℝ : x 2 − x + 2 < 0 "
C. " ∀ x ∈ ℝ : x 2 − x + 2 ≠ 0 "
D. " ∃ x ∈ ℝ : x 2 − x + 2 ≤ 0 "
Mệnh đề phủ định của mệnh đề " ∀ x ∈ X ; P ( x ) " là " ∃ x ∈ X ; P ( x ) ¯ "
Do đó, mệnh đề phủ định P ¯ của P là: " ∃ x ∈ R ; x 2 − x + 2 ≤ 0 "
Đáp án D
Lập mệnh đề phủ định của mỗi mệnh đề sau và nhận xét tính đúng sai của mệnh đề phủ định đó.
a) A: “\(\frac{5}{{1,2}}\) là một phân số”.
b) B: “Phương trình \({x^2} + 3x + 2 = 0\) có nghiệm”.
c) C: “\({2^2} + {2^3} = {2^{2 + 3}}\)”.
d) D: “Số 2 025 chia hết cho 15”.
a) \(\overline A \): “\(\frac{5}{{1,2}}\) không là một phân số”.
Đúng vì \(\frac{5}{{1,2}}\) không là phân số (do 1,2 không là số nguyên)
b) \(\overline B \): “Phương trình \({x^2} + 3x + 2 = 0\) vô nghiệm”.
Sai vì phương trình \({x^2} + 3x + 2 = 0\) có hai nghiệm là \(x = - 1\) và \(x = - 2\).
c) \(\overline C \): “\({2^2} + {2^3} \ne {2^{2 + 3}}\)”.
Đúng vì \({2^2} + {2^3} = 12 \ne 32 = {2^{2 + 3}}\).
d) \(\overline D \): “Số 2 025 không chia hết cho 15”.
Sai vì 2025 = 15. 135, chia hết cho 15.
Phát biểu mệnh đề phủ định của các mệnh đề sau. Xét tính đúng sai của mỗi mệnh đề và mệnh đề phủ định của nó.
a) Paris là thủ đô của nước Anh
b) 23 là số nguyên tố
c) 2021 chia hết cho 3
d) Phương trình \({x^2} - 3x + 4 = 0\) vô nghiệm.
Mệnh đề phủ định của các mệnh đề trên là:
a) “Paris không phải là thủ đô của nước Anh”
b) “23 không phải là số nguyên tố”
c) “2021 không chia hết cho 3”
d) “Phương trình \({x^2} - 3x + 4 = 0\) có nghiệm”.
+) Xét tính đúng sai:
a) “Paris là thủ đô của nước Anh” là mệnh đề sai.
“Paris không phải là thủ đô của nước Anh” là mệnh đề đúng.
b) “23 là số nguyên tố” là mệnh đề đúng.
“23 không phải là số nguyên tố” là mệnh đề sai.
c) “2021 chia hết cho 3” là mệnh đề sai.
“2021 không chia hết cho 3” là mệnh đề đúng.
d) “Phương trình \({x^2} - 3x + 4 = 0\) vô nghiệm” là mệnh đề đúng.
“Phương trình \({x^2} - 3x + 4 = 0\) có nghiệm” là mệnh đề sai.
Lập mệnh đề phủ định của mỗi mệnh đề sau và nhận xét tính đúng sai của mệnh đề phủ định đó.
A: “Đồ thị hàm số y = x là một đường thẳng”
B: “Đồ thị hàm số \(y = {x^2}\) không đi qua điểm A (3; 9)”
+) Mệnh đề phủ định của mệnh đề A là \(\overline A \): “Đồ thị hàm số y = x không là một đường thẳng”
Mệnh đề \(\overline A \) sai vì đồ thị hàm số y = x là một đường thẳng.
+) Mệnh đề phủ định của mệnh đề B là \(\overline B \): “Đồ thị hàm số \(y = {x^2}\) đi qua điểm A (3; 9)”
Mệnh đề \(\overline B \) đúng vì \(9 = {3^2}\) nên A (3;9) thuộc đồ thị hàm số \(y = {x^2}\).