Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 9 2018 lúc 11:58

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 6 2018 lúc 15:42

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 5 2018 lúc 12:10

Chọn C.

Phương pháp : Dãy số giảm bị chặn dưới thì có giới hạn.

Cách giải : Dễ thấy dãy số đã cho là dãy số dương.

Vậy dãy số đã cho giảm và bị chặn dưới nên có giới hạn.

Nguyentatthanh
Xem chi tiết
Lê Song Phương
14 tháng 8 2023 lúc 6:37

 Dễ thấy \(u_n>0,\forall n\inℕ^∗\)

 Ta có \(u_{n+1}-u_n=\dfrac{u_n^2+2021}{2u_n}-u_n=\dfrac{2021-u_n^2}{2u_n}\)

 Với \(n\ge2\) thì \(u_n=\dfrac{u_{n-1}^2+2021}{2u_{n-1}}\) \(=\dfrac{u_{n-1}}{2}+\dfrac{2021}{2u_{n-1}}\) \(>2\sqrt{\dfrac{u_{n-1}}{2}.\dfrac{2021}{2u_{n-1}}}\) \(=\sqrt{2021}\)

Vậy \(u_n>\sqrt{2021},\forall n\ge2\), suy ra \(u_{n+1}-u_n=\dfrac{2021-u_n^2}{2u_n}< 0,\forall n\inℕ^∗\)

\(\Rightarrow\) Dãy \(\left(u_n\right)\) là dãy giảm. Mà \(u_n>\sqrt{2021}\)  \(\Rightarrow\left(u_n\right)\) có giới hạn hữu hạn. Đặt \(\lim\limits_{n\rightarrow+\infty}u_n=L\) \(\Rightarrow L=\dfrac{L^2+2021}{2L}\) \(\Leftrightarrow L=\sqrt{2021}\)

 Vậy \(\lim\limits_{n\rightarrow+\infty}u_n=\sqrt{2021}\)

 

Nguyễn Chí Dũng
14 tháng 8 2023 lúc 8:11

Dễ thấy ��>0,∀�∈N∗

 Ta có ��+1−��=��2+20212��−��=2021−��22��

 Với �≥2 thì ��=��−12+20212��−1 =��−12+20212��−1 >2��−12.20212��−1 =2021

Vậy ��>2021,∀�≥2, suy ra ��+1−��=2021−��22��<0,∀�∈N∗

 Dãy (��) là dãy giảm. Mà ��>2021  ⇒(��) có giới hạn hữu hạn. Đặt lim⁡�→+∞��=� ⇒�=�2+20212� ⇔�=2021

 Vậy lim⁡�→+∞��=2021
 

Đào Trí Bình
14 tháng 8 2023 lúc 8:37

lim(n =) + ∞) un = \(\sqrt{2021}\) 

Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2021 lúc 6:39

Ta sẽ chứng minh dãy bị chặn trên bởi 2

Thật vậy, với \(n=1;2\) thỏa mãn

Giả sử điều đó cũng đúng với \(n=k\) , tức \(u_k< 2\)

Ta cần chứng minh \(u_{k+1}< 2\)

Ta có: \(u_{k+1}=\sqrt{3u_k-2}< \sqrt{3.2-2}=2\) (đpcm)

Tương tự, ta cũng quy nạp được dễ dàng \(u_n>1\)

Mặt khác: \(u_n-u_{n-1}=\sqrt{3u_{n-1}-2}-u_{n-1}=\dfrac{3u_{n-1}-2-u_{n-1}^2}{\sqrt{3u_{n-1}-2}+u_{n-1}}\)

\(=\dfrac{\left(2-u_{n-1}\right)\left(u_{n-1}-1\right)}{\sqrt{3u_{n-1}-2}+u_{n-1}}>0\)

\(\Rightarrow u_n>u_{n-1}\Rightarrow\) dãy tăng

Dãy tăng và bị chặn trên nên có giới hạn hữu hạn.

Gọi giới hạn đó là k thì:

\(k=\sqrt{3k-2}\Leftrightarrow k=2\)

thanh tat
Xem chi tiết
phương mai
Xem chi tiết
Hồng Nhan
26 tháng 11 2023 lúc 21:33

loading...

Minh Nguyệt
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 3 2021 lúc 22:30

Đề không cho sẵn dãy tăng à? Vậy phải chứng minh nó tăng trước

\(u_{n+1}=\dfrac{u_n^2+2018u_n+1}{2020}\)

\(u_{n+1}-u_n=\dfrac{u_n^2+2018u_n+1}{2020}-u_n=\dfrac{\left(u_n-1\right)^2}{2020}\ge0\) \(\Rightarrow\) dãy tăng và không bị chặn trên \(\Rightarrow lim\left(u_n\right)=+\infty\)

\(\Rightarrow2020u_{n+1}=u_n^2+2018u_n+1\)

\(\Leftrightarrow2020u_{n+1}-2020=u_n^2+2018u_n-2019\)

\(\Leftrightarrow2020\left(u_{n+1}-1\right)=\left(u_n+2019\right)\left(u_n-1\right)\)

\(\Rightarrow\dfrac{1}{2020\left(u_{n+1}-1\right)}=\dfrac{1}{\left(u_n+2019\right)\left(u_n-1\right)}=\dfrac{1}{2020}\left(\dfrac{1}{u_n-1}-\dfrac{1}{u_n+2019}\right)\)

\(\Rightarrow\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Thế n=1;2;...;n ta được:

\(\dfrac{1}{u_1+2019}=\dfrac{1}{u_1-1}-\dfrac{1}{u_2-1}\)

\(\dfrac{1}{u_2+2019}=\dfrac{1}{u_2-1}-\dfrac{1}{u_3-1}\)

...

\(\dfrac{1}{u_n+2019}=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}\)

Cộng vế: \(S_n=\dfrac{1}{u_n-1}-\dfrac{1}{u_{n+1}-1}=\dfrac{1}{2018}-\dfrac{1}{u_{n+1}-1}\)

\(\Rightarrow\lim\left(S_n\right)=\dfrac{1}{2018}-\dfrac{1}{\infty}=\dfrac{1}{2018}\)

Big City Boy
Xem chi tiết