Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 11 2017 lúc 16:52

Đáp án đúng : B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 8 2019 lúc 2:40

Đáp án đúng : B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
31 tháng 7 2019 lúc 12:31

Giá trị lớn nhất và nhỏ nhất của hàm số đã cho là: 4 và - 2

Đáp án A

Châu Ngọc Minh Anh
Xem chi tiết
Nguyễn Việt Lâm
15 tháng 12 2020 lúc 0:57

\(y=5\left[\dfrac{3}{5}sin\left(3x+\dfrac{\pi}{6}\right)+\dfrac{4}{5}cos\left(3x+\dfrac{\pi}{6}\right)\right]\)

\(y=5.sin\left(3x+\dfrac{\pi}{6}+a\right)\) với \(cosa=\dfrac{3}{5}\)

Do \(-1\le sin\left(3x+\dfrac{\pi}{6}+a\right)\le1\)

\(\Rightarrow-5\le y\le5\)

Trung Tâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 1 2023 lúc 20:03

a: ĐKXĐ: 2x<>kpi và cot2x<>-1/căn 3

=>x<>kpi/2 và 2x<>-pi/3+kpi

=>x<>kpi/2 và x<>-pi/6+kpi/2

b: -1<=cos(2x+pi/5)<=1

=>-4<=4cos(2x+pi/5)<=4

=>5<=y<=13

y=5 khi 2x+pi/5=pi+k2pi

=>x=2/5pi+kpi

y=13 khi 2x+pi/5=k2pi

=>x=kpi-pi/10

vvvvvvvv
Xem chi tiết
panda8734
Xem chi tiết
Akai Haruma
3 tháng 2 2024 lúc 22:29

Câu 1:

$y=-2x^2+4x+3=5-2(x^2-2x+1)=5-2(x-1)^2$

Vì $(x-1)^2\geq 0$ với mọi $x\in\mathbb{R}$ nên $y=5-2(x-1)^2\leq 5$

Vậy $y_{\max}=5$ khi $x=1$
Hàm số không có min.

Akai Haruma
3 tháng 2 2024 lúc 22:48

Câu 2:

Hàm số $y$ có $a=-3<0; b=2, c=1$ nên đths có trục đối xứng $x=\frac{-b}{2a}=\frac{1}{3}$

Lập BTT ta thấy hàm số đồng biến trên $(-\infty; \frac{1}{3})$ và nghịch biến trên $(\frac{1}{3}; +\infty)$

Với $x\in (1;3)$ thì hàm luôn nghịch biến

$\Rightarrow f(3)< y< f(1)$ với mọi $x\in (1;3)$

$\Rightarrow$ hàm không có min, max. 

Akai Haruma
3 tháng 2 2024 lúc 22:50

Câu 3:

$y=x^2-4x-5$ có $a=1>0, b=-4; c=-5$ có trục đối xứng $x=\frac{-b}{2a}=2$

Do $a>0$ nên hàm nghịch biến trên $(-\infty;2)$ và đồng biến trên $(2;+\infty)$

Với $x\in (-1;4)$ vẽ BTT ta thu được $y_{\min}=f(2)=-9$

écc éc
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 9 2021 lúc 20:25

\(-1\le sin\left(x^2\right)\le1\Rightarrow\)\(0\le\sqrt{1-sin\left(x^2\right)}\le\sqrt{2}\Rightarrow-1\le y\le\sqrt{2}-1\)

\(y_{min}=-1\) khi \(sin\left(x^2\right)=1\Rightarrow x=\pm\sqrt{\dfrac{\pi}{2}+k2\pi}\) (\(k\in N\))

\(y_{max}=\sqrt{2}-1\) khi \(sin\left(x^2\right)=-1\Rightarrow x=\pm\sqrt{-\dfrac{\pi}{2}+k2\pi}\) (\(k\in Z^+\))

cường hoàng
Xem chi tiết