Cho hàm số f ( x ) = x 3 + 2 x 2 − 7 x + 3 . Để f ' ( x ) ≤ 0 thì x có giá trị thuộc tập hợp nào?
A. − 7 3 ; 1
B. − 1 ; 7 3
C. − 7 3 ; 1
D. − 7 3 ; 1
Cho hàm số f(x) có f'(x) = (x2 - 4)(x3 - 1)2(3x - 27)(x - 25)3(x - 7)7. Số điểm cực đại của hàm số f(\(\left|x\right|\)) là?
Bài này khá dễ, chỉ cần tìm số nghiệm bội lẻ và dương của \(f'\left(x\right)=0\), gọi nó là k thì số cực trị của \(f\left(\left|x\right|\right)=2k+1\) (do đồ thị đối xứng qua Oy đồng thời luôn nhận \(x=0\) là 1 cực trị)
\(f'\left(x\right)=0\) có các nghiệm bội lẻ dương là 2; 3; 7; 25 tổng cộng 4 nghiệm
Do đó \(f\left(\left|x\right|\right)\) có 9 cực trị
Cho hàm số y = f ( x ) = x − 1 2 − x − 7 khi x ≥ 2 x < 2
Tính f ( 3 ) ; f ( 0 ) ; f ( 2 ) ; f ( − 2 )
A. f(3) = 1; f(0) = -7; f(2) = − 1 2 ; f(-2) = -5
B. f(3) = -10; f(0) = -7; f(2) = -9; f(-2) = -5
C. f(3) = 1; f(0) = -7; f(2) = 1 2 ; f(-2) = -5
D. f(3) = 1; f(0) = 7; f(2) = 1 2 ; f(-2) = -9
Cho hàm số f(x) có f ( x ) = ( x + 1 ) 4 ( x - 2 ) 3 ( 2 x + 3 ) 7 ( x - 1 ) 10 . Tìm cực trị f(x)
A. 3
B. 2
C. 1
D. 4
Chọn B.
Xét :
Có nghiệm bội chẵn x = - 1 , x = 1 nên dấu của f’(x) qua hai nghiệm này không đổi dấu => x = 1 và x = - 1 không là cực trị
Có nghiệm bội lẻ x = 2 , x = - 3 2 , nên nó là hai cực trị
Kết luận: Hàm số có hai cực trị.
Cho các Hàm số f1(x) = 5x2; f2(x) = -6x; f3(x) = 7/x; f4(x) = x5; f5(x) = x6 + x4. Trong các hàm số trên, hàm số nào có tính chất f(x) = f(-x) với mọi x?
Bài 1: Xét tính đơn điệu của hàm số \(y=f(x)\) khi biết đạo hàm của hàm số là:
a) \(f'(x)=(x+1)(1-x^2)(2x-1)^3\)
b) \(f'(x)=(x+2)(x-3)^2(x-4)^3\)
Bài 2: Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)=x(x+1)(x-2)\). Xét tính biến thiên của hàm số:
a) \(y=f(2-3x)\)
b) \(y=f(x^2+1)\)
c) \(y=f(3x+1)\)
Cho hàm số y=f(x)=√x+7 -3∠x-2 , xkhác 2 ; mx+2023 ,x=2 (với m là tham số)
Tìm m để hàm số liên tục tại điểm x=2
\(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{\sqrt{x+7}-3}{x-2}\left(x< >2\right)\\mx+2023\left(x=2\right)\end{matrix}\right.\)
Để hàm số liên tục tại x=2 thì \(\lim\limits_{x\rightarrow2}f\left(x\right)=F\left(2\right)\)
=>\(\lim\limits_{x\rightarrow2}\dfrac{x+7-9}{\left(x-2\right)\left(\sqrt{x+7}+3\right)}=2m+2023\)
=>\(2m+2023=\dfrac{1}{\sqrt{2+7}+3}=\dfrac{1}{6}\)
=>m=-12137/12
a) Cho hàm số y = f(x) = -4x + 3. Tính f(-2); f(-1); f(0); f(-1/2); f(1/2).
b) Tìm x biết f(x) = -1; f(x) = -3; f(x) = 7.
a) thay f(-2) vào hàm số ta có :
y=f(-2)=(-4).(-2)+3=11
thay f(-1) vào hàm số ta có :
y=f(-1)=(-4).(-1)+3=7
thay f(0) vào hàm số ta có :
y=f(0)=-4.0+3=-1
thay f(-1/2) vào hàm số ta có :
y=f(-1/2)=(-4).(-1/2)+3=5
thay f(1/2) vào hàm số ta có :
y=f(-1/2)=(-4).1/2+3=1
b)
f(x)=-1 <=> -4x+3=-1 => x=1
f(x)=-3 <=> -4x+3=-3 => x=3/2
f(x)=7 <=> -4x+3=7 => x=-1
1.Cho hàm số y = g(x) = x - 4. Khi đó g(-2) bằng
A.-2 B.2 C.-6 D.6
2.Cho hàm số y = f(x) = -3x+ 5. Nếu f(x) = -7 thì x bằng
A.2/3 B.-4 C.2 D.4
a) cho hàm số y=(f)x=x^6+1/x^3.cmr f(1/2)=f(x)
b) cho hàm số y=(f)x=x^2+1/x^2.CMR f(x)=f(-x)
c) cho hàm số y=(f)x=5^x. Tính f(x+1)-f(x)
HELPPPPPPPPPPPPP ME!
1) cho hàm số \(f\left(x\right)=\dfrac{1}{3}x^3-2\sqrt{2}x^2+8x-1\) có đạo hàm là f'(x). Tập hợp những giá trị của x để f'(x) = 0
2) cho hàm số \(f\left(x\right)=\dfrac{3-3x+x^2}{x-1}\) giải bất phương trình f'(x) = 0
2: ĐKXĐ: x<>1
\(f'\left(x\right)=\dfrac{\left(x^2-3x+3\right)'\left(x-1\right)-\left(x^2-3x+3\right)\left(x-1\right)'}{\left(x-1\right)^2}\)
\(=\dfrac{\left(2x-3\right)\left(x-1\right)-\left(x^2-3x+3\right)}{\left(x-1\right)^2}\)
\(=\dfrac{2x^2-5x+3-x^2+3x-3}{\left(x-1\right)^2}=\dfrac{x^2-2x}{\left(x-1\right)^2}\)
f'(x)=0
=>x^2-2x=0
=>x(x-2)=0
=>\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
1:
\(f\left(x\right)=\dfrac{1}{3}x^3-2\sqrt{2}\cdot x^2+8x-1\)
=>\(f'\left(x\right)=\dfrac{1}{3}\cdot3x^2-2\sqrt{2}\cdot2x+8=x^2-4\sqrt{2}\cdot x+8=\left(x-2\sqrt{2}\right)^2\)
f'(x)=0
=>\(\left(x-2\sqrt{2}\right)^2=0\)
=>\(x-2\sqrt{2}=0\)
=>\(x=2\sqrt{2}\)