Giá trị của biểu thức: A= 1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+4+...+99)+1/50
Giá trị của biểu thức: A= 1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+..........+1/(1+2+3+.......+99)+1/50
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}\)+ \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)
A = 1
Giá trị của biểu thức:
A=1/1+2 + 1/1+2+3 + 1/1+2+3+4 + ... + 1/1+2+3+...+99 +1/50
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}\)+ \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)
A = 1
Biểu thức A= 1/1+2+1/1+2+3+1/1+2+3+4+...+1/1+2+3+...+99+1/50 có giá trị a là....
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}\)+ \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)
A = 1
Giá trị của biểu thức:1/(1+2)+1/(1+2+3)+1/(1+2+3+4)......+1/(1+2+3+...+99)+1/50 là
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}\)+ \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)
A = 1
Giá trị biểu thức :
A=(1/1+2)+(1/1+2+3)+(1/1+2+3+4)+...+(1/1+2+3+...+99)+(1/50) là
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}\)+ \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)
A = 1
Giá trị của biểu thức:
A=1/1+2 + 1/1+2+3 + 1/1+2+3+4 + ... + 1/1+2+3+...+99 +1/50
giup dum like cho
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}\)+ \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)
A = 1
Giá trị biểu thức 1/1+2 + 1/1+2+3 + 1/1+2+3+4 +...+ 1/1+2+3+...+99 + 1/50 là
A = \(\dfrac{1}{1+2}\) + \(\dfrac{1}{1+2+3}\) + ... + \(\dfrac{1}{1+2+3+...+99}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{1}{\left(2+1\right).2:2}\) + \(\dfrac{1}{\left(3+1\right).3:2}\) + ... + \(\dfrac{1}{\left(99+1\right).99:2}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + ... + \(\dfrac{2}{99.100}\) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + ... + \(\dfrac{1}{99.100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + \(\dfrac{1}{4}-\dfrac{1}{5}\)+ \(\dfrac{1}{5}\) - \(\dfrac{1}{6}\) + ... + \(\dfrac{1}{99}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{1}{2}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.(\(\dfrac{50}{100}\) - \(\dfrac{1}{100}\)) + \(\dfrac{1}{50}\)
A = 2.\(\dfrac{49}{100}\) + \(\dfrac{1}{50}\)
A = \(\dfrac{49}{50}\) + \(\dfrac{1}{50}\)
A = 1
Giá trị của biểu thức :
\(A=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+99}+\frac{1}{50}\)=?
= 1 đó em
Cách giải: Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Đặt \(S=\frac{1}{2.3:2}+\frac{1}{3.4:2}+....+\frac{1}{99.100:2}\)
\(\frac{1}{2}S=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...-\frac{1}{100}\)
\(\frac{1}{2}S=\frac{1}{2}-\frac{1}{100}=\frac{50}{100}-\frac{1}{100}=\frac{49}{100}\)
S = 49/100 x 2 = 49/50
A = \(S+\frac{1}{50}=\frac{49}{50}+\frac{1}{50}=1\)
Tính giá trị của biểu thức :
A=1/1*2*3+1/2*3*4+...+1/98*99*100
B=1/1*2*3*4+1/2*3*4*5+...+1/27*28*29*30
C=1*3+2*3+3*5+...+97*99+98*100
D=1*2*3+2*3*4+3*4*5+...+48*49*50
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(A=\frac{1}{2}.\frac{4949}{9900}\)
\(A=\frac{4949}{19800}\)