Tìm GTLN
\(N=\frac{14}{5-2x+x^2}\)
Tìm GTLN của biểu thức: B=\(\frac{x^2+4x-14}{x^2-2x+1}\)(x khác 1)
Tìm GTNN : C = \(\frac{2}{6x^2-5-9x^2}\)
Tìm GTLN : M = \(\frac{3}{2x^2+2x+3}\)
N = x- x2
Tìm GTLN:
N= \(\frac{1}{\sqrt{x^2-2x+5}}\)
Ta thấy :\(x^2-2x+5=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow\sqrt{x^2-2x+5}\ge\sqrt{4}=2\)
\(\Rightarrow\frac{1}{\sqrt{x^2-2x+5}}\le2\)
Xảy ra khi \(x=1\)
Tìm GTNN hoặc GTLN (nếu có) của:
a) A = \(\sqrt{x^2-2x+5}\)
b) B = 5 - \(\sqrt{x^2-6x+14}\)
a) \(A=\sqrt[]{x^2-2x+5}\)
\(\Leftrightarrow A=\sqrt[]{x^2-2x+1+4}\)
\(\Leftrightarrow A=\sqrt[]{\left(x+1\right)^2+4}\)
mà \(\left(x+1\right)^2\ge0,\forall x\in R\)
\(A=\sqrt[]{\left(x+1\right)^2+4}\ge\sqrt[]{4}=2\)
Dấu "=" xảy ra khi và chỉ khi \(x+1=0\Leftrightarrow x=-1\)
Vậy \(GTNN\left(A\right)=2\left(khi.x=-1\right)\)
b) \(B=5-\sqrt[]{x^2-6x+14}\)
\(\Leftrightarrow B=5-\sqrt[]{x^2-6x+9+5}\)
\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\left(1\right)\)
Ta có : \(\left(x-3\right)^2\ge0,\forall x\in R\)
\(\Leftrightarrow\left(x-3\right)^2+5\ge5,\forall x\in R\)
\(\Leftrightarrow\sqrt[]{\left(x-3\right)^2+5}\ge\sqrt[]{5},\forall x\in R\)
\(\Leftrightarrow-\sqrt[]{\left(x-3\right)^2+5}\le-\sqrt[]{5},\forall x\in R\)
\(\Leftrightarrow B=5-\sqrt[]{\left(x-3\right)^2+5}\le5-\sqrt[]{5},\forall x\in R\)
Dấu "=" xả ra khi và chỉ khi \(x-3=0\Leftrightarrow x=3\)
Vậy \(GTLN\left(B\right)=5-\sqrt[]{5}\left(khi.x=3\right)\)
1. Tìm GTNN của A= \(\frac{x^2-2x+2018}{x^2}\)
2. Tìm GTLN của B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
3. Tìm GTLN của M= \(\frac{3x^2+14}{x^2+4}\)
4. Cho x+y=2. Tìm GTNN của A= \(x^3+y^3+2xy\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
ê viết lộn dòng này :v
\(MinA=\frac{2017}{2018}\)nha
* Tìm GTNN của \(\sqrt{x^2-2x+5}\)
* Tìm GTLN của \(5-\sqrt{x^2-6x+14}\)
\(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)
\(\sqrt{\left(x-1\right)^2+4}\ge2\)
\(\sqrt{x^2-2x+5}\ge2\)
tìm x , để có gtln
a,\(\frac{27-2x}{12-x}\)
b.\(\frac{14-x}{4-x}\)
\(A=\frac{27-2x}{12-x}=\frac{24-2x}{12-x}+\frac{3}{12-x}=2+\frac{3}{12-x}\)
Câu b bạn tự làm nhé
Chúc bạn hok tốt :>
Tìm GTLN : M=\(\frac{x^2+2x+3}{x^2+2}\)
Tìm GTNN: N=\(\frac{4x}{x^2+2}\)
\(M=\frac{x^2+2x+3}{x^2+2}=\frac{2x^2+4-x^2+2x-1}{x^2+2}=\frac{2\left(x^2+2\right)-\left(x-1\right)^2}{x^2+2}=2-\frac{\left(x-1\right)^2}{x^2+2}\le2\)
\(N=\frac{4x}{x^2+2}=\frac{-\sqrt{2}x^2-2\sqrt{2}+\sqrt{2}x^2+4x+2\sqrt{2}}{x^2+2}\)
\(=\frac{-\sqrt{2}\left(x^2+2\right)+\sqrt{2}\left(x^2+2\sqrt{2}x+2\right)}{x^2+2}=-\sqrt{2}+\frac{\sqrt{2}\left(x+\sqrt{2}\right)^2}{x^2+2}\ge-\sqrt{2}\)
Tìm GTLN của D=\(\frac{2x^2-6x+5}{2x}\) (x>0)
Ta có : \(D=\frac{2x^2-6x+5}{2x}=x-3+\frac{5}{2x}\)
Áp dụng bất đẳng thức Cauchy , ta có : \(D=x+\frac{5}{2x}-3\ge2\sqrt{x.\frac{5}{2x}}-3=\sqrt{10}-3\)
Dấu "=" xảy ra \(\Leftrightarrow\begin{cases}x>0\\x=\frac{5}{2x}\end{cases}\) \(\Leftrightarrow x=\sqrt{\frac{5}{2}}\)
Vậy D đạt giá trị nhỏ nhất bằng \(\sqrt{10}-3\) tại x = \(\sqrt{\frac{5}{2}}\)
Bài này k xác định được GTLN bạn nhé.