Cho phương trình x 2 - 5 x + 3 x 2 - 5 x + 10 = 0 . Đặt t = x 2 - 5 x + 10 ( t ≥ 0 ) . Khi đó, phương trình đã cho trở thành phương trình
Cho phương trình ẩn x: \(\dfrac{x-m}{x+5}+\dfrac{x-5}{x+m}=2\). Giải phương trình với m=-3
Thay `m=-3` ta có:
`(x+3)/(x+5)+(x-5)/(x-3)=2`
`<=>(x^2-9+x^2-25)/((x+5)(x-3))=2`
`<=>(2x^2-34)/(x^2+2x-15)=2`
`<=>2x^2-34=2x^2+4x-30`
`<=>4x=-4`
`<=>x=-1`
Vậy `S={-1}`
mình nhờ các bạn giải hộ vài bài với, mình xin cảm ơn rất nhiều
1. Giải phương trình
a) (x+5)(2x+1) - x2 + 25 = 0
b 3x/x-2 - x/x-5 + 3x/(x-2)(x-5) = 0
2 cho phương trình ẩn x
x+1/x+2+m = x+1/x+2-m
a) giải phương trình khi m = -3
b) tìm các giá trị m sao cho phương trình nhận x=3 làm nghiệm
1/a/\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-6\end{cases}}}\)
Vậy ...................
b/ ĐKXĐ:\(x\ne2;x\ne5\)
.....\(\Rightarrow3x^2-15x-x^2+2x+3x=0\)
\(\Leftrightarrow2x^2-10x=0\)
\(\Leftrightarrow2x\left(x-5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\left(nhận\right)\\x=5\left(loại\right)\end{cases}}}\)
Vậy ..............
`Answer:`
`1.`
a. \(\left(x+5\right)\left(2x+1\right)-x^2+25=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x+1\right)-\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2x+1-x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=-5\end{cases}}}\)
b. \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\left(ĐKXĐ:x\ne2;x\ne5\right)\)
\(\Leftrightarrow\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}+\frac{3x}{\left(x-2\right)\left(x-5\right)}=0\)
\(\Leftrightarrow\frac{3x\left(x-5\right)-x\left(x-2\right)+3x}{\left(x-2\right)\left(x-5\right)}=0\)
\(\Leftrightarrow3x\left(x-5\right)-x\left(x-2\right)+3x=0\)
\(\Leftrightarrow3x^2-15x-x^2+2x+3x=0\)
\(\Leftrightarrow2x\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x=0\\x-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\text{(Không thoả mãn)}\end{cases}}}\)
`2.`
\(ĐKXĐ:x\ne-m-2;x\ne m-2\)
Ta có: \(\frac{x+1}{x+2+m}=\frac{x+1}{x+2-m}\left(1\right)\)
a. Khi `m=-3` phương trình `(1)` sẽ trở thành: \(\frac{x+1}{x-1}=\frac{x+1}{x+5}\left(x\ne1;x\ne-5\right)\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\\frac{1}{x-1}=\frac{1}{x+5}\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x-1=x+5\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\-1=5\text{(Vô nghiệm)}\end{cases}}}\)
b. Để phương trình `(1)` nhận `x=3` làm nghiệm thì
\(\Leftrightarrow\hept{\begin{cases}\frac{3+1}{3+2-m}=\frac{3+1}{3+2-m}\\3\ne-m-2\\3\ne m-2\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{4}{5+m}=\frac{4}{5-m}\\m\ne\pm5\end{cases}}\Leftrightarrow\hept{\begin{cases}5+m=5-m\\m\ne\pm5\end{cases}}\Leftrightarrow m=0\)
a)Hãy định nghĩa phương trình bậc nhất một ẩn?Phương trình : 2x – 5 = 3 + 2x có phải là phương trình bậc nhất một ẩn không ?
b)Tìm các giá trị của m sao cho phương trình :12 – 2(1- x)2 = 4(x – m) – (x – 3 )(2x +5) có nghiệm x = 3.
c)Định nghĩa hai phương trình tương đương ? Cho ví dụ. Giải thích.
a: Phương trình có dạng ax+b=0 khi a<>0 được gọi là phương trình bậc nhất một ẩn
Phương trình 2x-5=2x+3 là phương trình bậc nhất một ẩn
c: Hai phương trình tương đương là hai phương trình có cùng tập nghiệm
3.15 giải các phương trình sau :
a) ( x - 6 ) ( 2x - 5 ) ( 3x + 9 ) = 0
b) 2x( x - 3 ) + 5( x - 3 ) = 0
c) ( x^2 - 4 ) - ( x - 2 ) ( 3 - 2x ) =0
3.16 tìm m để phương trình sau có nghiệm :
x=-7 ( 2m - 5 )x - 2m^2 + 8
3.17 giải các phương trình sau :
a) ( 2x - 1 )^2 - ( 2x + 1 ) = 0
\(a,\left(x-6\right)\left(2x-5\right)\left(3x+9\right)=0\Leftrightarrow\left[{}\begin{matrix}x-6=0\Leftrightarrow x=6\\2x-5=0\Leftrightarrow x=\dfrac{5}{2}\\3x+9=0\Leftrightarrow x=-3\end{matrix}\right.\)
\(b,2x\left(x-3\right)+5\left(x-3\right)=0\Leftrightarrow\left(2x+5\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\Leftrightarrow x=3\\2x+5=0\Leftrightarrow x=-\dfrac{5}{2}\end{matrix}\right.\)
\(c,x^2-4-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(x=-7\left(2m-5\right)x-2m^2+8\Leftrightarrow x+7\left(2m-5\right)=8-2m^2\Leftrightarrow x\left(14m-34\right)=8-2m^2\)
\(ycđb\Leftrightarrow14m-34\ne0\Leftrightarrow m\ne\dfrac{34}{14}\)\(\Rightarrow x=\dfrac{8-2m^2}{14m-34}\)
\(3.17\Leftrightarrow4x^2-4x+1-2x-1=0\Leftrightarrow4x^2-6x=0\Leftrightarrow x\left(4x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
3.15:
a, \(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\2x-5=0\\3x+9=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=\dfrac{5}{2}\\x=-\dfrac{9}{3}=-3\end{matrix}\right.\)
b, \(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)
c, \(\Leftrightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)
3.16
\(\Leftrightarrow\left(2m-5\right).-7-2m^2+8=0\)
\(\Leftrightarrow-14m+35-2m^2+8=0\)
\(\Leftrightarrow-14m-2m^2+43=0\)
\(\Leftrightarrow-2\left(7m+m^2\right)=-43\)
\(\Leftrightarrow m\left(7-m\right)=\dfrac{43}{2}\)
\(\Leftrightarrow\dfrac{m\left(7-m\right)}{1}-\dfrac{43}{2}=0\)
\(\Leftrightarrow\dfrac{14m-2m^2}{2}-\dfrac{43}{2}=0\)
pt vô nghiệm
1/ Với giá trị nào của x thì 2 bất phương trình sau đây tương đương: (a-1)x - a+3>0 và ( a+1)x-a+2>0
2/ Bất phương trình: 5x/5 - 13/21 + x/15 < 9/25- 2x/35 có nghiệm là....
3/ Bất phương trình: 5x-1 < 2x/5 + 3 có nghiệm là...
4/ Bất phương trình: (x+4/x^2-9) -(2/x+3) < (4x/3x-x^2) có nghiệm nguyên lớn nhất là...
5/ Các nghiệm tự nhiên bé hơn 4 của bất phương trình (2x/5) -23 < 2x -16
6/ Các nghiệm tự nhiên bé hơn 6 của bất phương trình: 5x - 1/3 > 12 - 2x/3
7/ Bất phương trình: 2(x-1) - x > 3(x-1) - 2x-5 có tập nghiệm là...
8/ Bất phương trình: (3x+5/2) -1< (x+2/3)+x có tập nghiệm là...
9/ Bất phương trình: /x+2/ - /x-1/ < x - 3/2 có tập nghiệm là
10/ Bất phương trình: /x+1/ + /x-4/ > 7 có nghiệm nguyên dương nhỏ nhất là....
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Mình không biết sin lỗi vạn
Cho phương trình: 2(m - 1)x + 3 = 2m – 5 (1) |
a) Tìm m để phương trình (1) là phương trình bậc nhất một ẩn.
b) Với giá trị nào của m thì phương trình (1) tương đương với phương trình 2x + 5 = 3(x + 2) - 1 (*).
a, Để phương trình (1) là phương trình bậc nhất một ẩn thì \(m-1\ne0\Leftrightarrow m\ne1\)
\(b,2x+5=3\left(x+2\right)-1\\ \Leftrightarrow2x+5=3x+6-1\\ \Leftrightarrow2x+5=3x+5\\ \Leftrightarrow x=0\)
b,Để pt trên là pt tương đương thì pt(1) có nghiệm x=0, thay x=0 vào pt(1) ta có:
\(2\left(m-1\right)x+3=2m-5\\ \Leftrightarrow2\left(m-1\right).3+3=2m-5\\ \Leftrightarrow2m-5=3\\ \Leftrightarrow2m=8\\ \Leftrightarrow m=4\)
a: Để (1) là phươg trình bậc nhất 1 ẩn thì (m-1)<>0
hay m<>1
b: Ta có: 2x+5=3(x+2)-1
=>2x+5=3x+6-1
=>3x+5=2x+5
=>x=0
Thay x=0 vào (1), ta được:
2m-5=3
hay m=4
Cho phương trình :2(m-1)x+3=2m-5 (1)
a) Tìm m để phương trình (1) là phương trình bậc nhất 1 ẩn
b) Với giá trị nào của m thì phương trình (1) tương đương với phương trình 2x+5=3(x+2)-1(*)
a.
(1) là pt bậc nhất 1 ẩn khi và chỉ khi \(2\left(m-1\right)\ne0\Leftrightarrow m\ne1\)
b.
Ta có: \(2x+5=3\left(x+2\right)-1\)
\(\Leftrightarrow2x+5=3x+5\)
\(\Leftrightarrow x=0\)
Do đó (1) tương đương (*) khi (1) nhận \(x=0\) là nghiệm
\(\Rightarrow2\left(m-1\right).0+3=2m-5\)
\(\Rightarrow m=4\)
Cho phương trình: 2( m – 1 ) x + 3 = 2m – 5 (1)
a) Tìm m để phương trình (1) là phương trình bậc nhất một ẩn.
b) Với giá trị nào của m thì phương trình (1) tương đương với phương trình 2x + 5 = 3( x + 2 ) – 1
a, Để pt trên là pt bậc nhất 1 ẩn thì: \(m-1\ne0\Leftrightarrow m\ne1\)
\(b,2x+5=3\left(x+2\right)-1\\ \Leftrightarrow2x+5=3x+6-1\\ \Leftrightarrow2x+5=3x+5\\ \Leftrightarrow x=0\)
Để pt (1) tương đương vs pt trên thì
\(2\left(m-1\right).0+3=2m-5\\ \Leftrightarrow2m-5=3\\ \Leftrightarrow2m=8\\ \Leftrightarrow m=4\)
aGiải phương trình |x-1|+|x-2|=|2x-3|
b)Giải phương trình 1/(x−2 )+ 2/(x−3) − 3/(x−5) = 1/(x^2 −5x+6)
Trong các phương trình sau phương trình nào là phương trình bậc nhất một ẩn xác định hệ số a,b của phương trình đó 1)0.x-5=0 2)3x²+2=0 3)8x-5=0 4) 3-4x/x=0 5)2x+3=0 6)3/x -5=0
phương trình bậc nhất 1 ẩn:
3)8x-5=0(a=8;b=-5)
5)2x+3=0(a=2;b=3)