Thu gọn đa thức B ( x ) = 6 x 4 - 7 x 3 + 6 x 2 - 7 x 3 + 4 x 4 + 3 - 5 x + 2 x ta được đa thức :
A. 6 x 4 + 14 x 3 + 6 x 2 - 3 x + 3
B. 10 x 4 - 14 x 3 + 6 x 2 - 3 x + 3
C. 6 x 4 - 7 x 3 + 6 x 2 - 3 x + 3
D. 7 x 4 - 14 x 3 + 6 x 2 - 3 x - 3
Cho đa thức \(P(x) = 9{x^4} + 8{x^3} - 6{x^2} + x - 1 - 9{x^4}\).
a) Thu gọn đa thức P(x).
b) Tìm số mũ cao nhất của x trong dạng thu gọn của P(x).
a) \(P(x) = 9{x^4} + 8{x^3} - 6{x^2} + x - 1 - 9{x^4} = (9{x^4} - 9{x^4}) + 8{x^3} - 6{x^2} + x - 1 = 8{x^3} - 6{x^2} + x - 1\).
b) Số mũ cao nhất của x trong dạng thu gọn của P(x) là 3.
Bài 3: 1) Thu gọn và tìm bậc đa thức N = 2x3 y 2 + x3 y - 6 x2 y - x 3 y 2 + 6 x2 y + 3x3 y
2) Thu gọn và xác định bậc đa thức M = 4 5 x 3 y 5 – 0,7xy + 2 5 x 3 y 5 – xy + 1 4 x 3 y 5
3) Thu gọn và tính giá trị đa thức tại x = -1, y = 1
Câu 2: (1,5 điểm) Hãy thu gọn các đơn thức,đa thức sau:
a) A = - ( 6 . 8 x x 7 6 3 y y ) ( 3 )
b) B xy xy xy xy = - - + + + 7 2 8 5 6
Bài 2: Cho đa thức A= -4\(x^5\)\(y^3\)+ 6\(x^4\)\(y^3\)- 3\(x^2\)\(y^3\)\(z^2\)+ 4\(x^5\)\(y^3\)- \(x^4y^3\)+ 3\(x^2y^3z^2\)- 2\(y^4\)+22
a) Thu gọn rồi tìm bậc của đa thức A
b) Tìm đa thức B, biết rằng: B-\(5y^4\)=A
`a)`
`A=-4x^5y^3+6x^4y^3-3x^2y^3z^2+4x^5y^3-x^4y^3+3x^2y^3z^2-2y^4+22`
`A=(-4x^5y^3+4x^5y^3)+(6x^4y^3-x^4y^3)-(3x^2y^3z^2-3x^2y^3z^2)-2y^4+22`
`A=5x^4y^3-2y^4+22`
`->` Bậc: `7`
`b)B-5y^4=A`
`=>B=A+5y^4`
`=>B=5x^4y^3-2y^4+22+5y^4`
`=>B=5x^4y^3+3y^4+22`
Cho đa thức P(x) = \(2x + 4{x^3} + 7{x^2} - 10x + 5{x^3} - 8{x^2}\). Hãy viết đa thức thu gọn, tìm bậc và các hệ số của đa thức P(x).
\(P(x) = 2x + 4{x^3} + 7{x^2} - 10x + 5{x^3} - 8{x^2}\)
\(=(4{x^3}+5{x^3})+( 7{x^2}- 8{x^2})+(2x-10x)\)
\( = 9{x^3} - {x^2} - 8x\)
Ta thấy số mũ cao nhất của biến x là 3 nên \(P(x)\) có bậc là 3
Hệ số của \({x^3}\) là 9
Hệ số của \({x^2}\)là -1
Hệ số của x là -8
Hệ số tự do là 0
Cho đa thức: P(x)=3x^2-5x^3+x+2x^3-x-4+3x^3+x^4+7
a)Thu gọn P(x)
b)Chứng tỏ đa thức P(x) lhông có nghiệm
Giúp mính với...!!!
a) \(P\left(x\right)=3x^2-5x^3+x+2x^3-x-4+3x^3+x^4+7\)
\(\Rightarrow P\left(x\right)=3x^2+\left(3x^3+2x^3-5x^3\right)+\left(x-x\right)+\left(7-4\right)\)
\(\Rightarrow P\left(x\right)=3x^2+0+0+3\)
\(\Rightarrow P\left(x\right)=3x^2+3\)
b) Vì \(3x^2\ge0\) nên \(P\left(x\right)=3x^2+3\ge3\)
Vậy đa thức P(x) vô nghiệm
Mình quên x4 nên P(x) = 3x2 + x4 + 3
Lý luận tương tự \(P\left(x\right)\ge3\) nên P(x) vô nghiệm
a, p(x) = 3x^2 - 5x^3 + x + 2x^3 - x - 4 + 3x^3 + x^4 + 7
= (3x^3 - 5x^3 + 2x^3) + 3x^2 + (x - x) + x^4 + 7 - 4
= 3x^2 + x^4 + 3
b, xét p(x) = 3x^2 + x^4 + 3 = 0
có 3x^2 > 0; x^4 > 0
=> 3x^2 + x^4 + 3 > 3
=> p(x) vô nghiệm (đpcm)
Cho đa thức \(R(x) = - 2{x^2} + 3{x^2} + 6x + 8{x^4} - 1\).
a) Thu gọn đa thức R(x).
b) Trong dạng thu gọn của đa thức R(x), sắp xếp các đơn thức theo số mũ giảm dần của biến.
a) \(R(x) = - 2{x^2} + 3{x^2} + 6x + 8{x^4} - 1 = ( - 2{x^2} + 3{x^2}) + 6x + 8{x^4} - 1 = {x^2} + 6x + 8{x^4} - 1\).
b) Trong các đơn thức của đa thức R(x) ta thấy, số mũ lớn nhất là 4, sau đó đến 2; 1 và 0.
Vậy \(R(x) = {x^2} + 6x + 8{x^4} - 1 = 8{x^4} + {x^2} + 6x - 1\).
Cho đa thức: P(x)=3x^2-5x^3+x+2x^3-x-4+3x^3+x^4+7
a)Thu gọn P(x)
b)Chứng tỏ đa thức P(x) lhông có nghiệm
Giúp mính với...!!!
a) Thu gọn:
P(x)= 3x2 - 5x3 + x + 2x3 - x - 4 + 3x3 + x4 + 7
P(x)= (-5x3 + 2x3 + 3x3) + (x - x) + (-4 + 7) + 3x2 + x4
P(x)= 3 + 3x2 + x4.
b) P(x)= 3 + 3x2 + x4
Vì:
+) x2 > hoặc =0 ∀ x ∈ R
+) x4 > hoặc =0 ∀ x ∈ R
=> P(x)= 3 + 3x2 + x4 > 0 ∀ x ∈ R.
Vậy P(x) không có nghiệm.
Lần sau nếu bạn viết đa thức thì bạn viết cách ra một chút nhé, chứ không thì khó nhìn lắm.
Chúc bạn học tốt!
1) Thu gọn và tìm bậc đa thức N = 2x mu 3 y mu 2 + x mu 3 y - 6 x mu 2 y - x mu 3 y mu 2 + 6 x mu 2 y + 3 x mu 3 y
2) Thu gọn và xác định bậc đa thức M = 4 phan 5 x mu 3 y mu 5 – 0,7xy + 2 phan 5 x mu 3 y mu 5 – xy + 1 phan 4 x mu 3 y mu 5
3) Thu gọn và tính giá trị đa thức tại x = -1, y = 1
Bài 3 :
Cho đa thức :
f(x) = 9x^3 - 1/3x + 3x^2 - 3x + 1/3x^2 - 1/9x^3 - 3x^2 - 9x + 27 + 3x
a, Thu gọn đa thức f(x)
b, Tính f(3) , f(-3)
Bài 4
Cho đa thức :
F(x) = 2x^6 + 3x^2 + 5x^3 - 2x^2 + 4x^4 - x^3 + 1 - 4x^3 - x^4
a, Thu gọn đa thức f(x)
b, Tính f(1) , f(-1)
c, Chứng minh đa thức f(x) không có nghiệm
- Giúp mình với
Bài 3:
\(f\left(x\right)=9x^3-\frac{1}{3}x+3x^2-3x+\frac{1}{3}x^2-\frac{1}{9}x^3-3x^2-9x+27+3x\)
\(f\left(x\right)=\left(9x^3-\frac{1}{9}x^3\right)-\left(\frac{1}{3}x+3x+9x-3x\right)+\left(3x^2-3x^2\right)+27\)
\(f\left(x\right)=\frac{80}{9}x^3-\frac{28}{3}x+27\)
Thay x = 3 vào đa thức, ta có:
\(f\left(3\right)=\frac{80}{9}.3^3-\frac{28}{3}.3+27\)
\(f\left(3\right)=240-28+27=239\)
Vậy đa thức trên bằng 239 tại x = 3
Thay x = -3 vào đa thức. ta có:
\(f\left(-3\right)=\frac{80}{9}.\left(-3\right)^3-\frac{28}{3}.\left(-3\right)+27\)
\(f\left(-3\right)=-240+28+27=-185\)
Bài 4: \(f\left(x\right)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4\)
\(f\left(x\right)=2x^6+\left(3x^2-2x^2\right)+\left(5x^3-x^3-4x^3\right)+\left(4x^4-x^4\right)\)
\(f\left(x\right)=2x^6+x^2+3x^4\)
Thay x=1 vào đa thức, ta có:
\(f\left(1\right)=2.1^6+1^2+3.1^4=2+1+3=6\)
Đa thức trên bằng 6 tại x =1
Thay x = - 1 vào đa thức, ta có:
\(f\left(-1\right)=2.\left(-1\right)^6+\left(-1\right)^2+3.\left(-1\right)^4=2+1+3=6\)
Đa thức trên có nghiệm = 0