Tìm giá trị y thỏa mãn 49 y - 4 2 - 9 y + 2 2 = 0 ?
A. y = 11 5 y = 17 2
B. y = - 11 5 y = 17 2
C. y = 11 5 y = 6
D. y = 11 5 y = - 6
Cho x,y thỏa mãn 2 x + 3 + y + 3 = 4 . Tìm giá trị nhỏ nhất của P= x + 2 + y + 9
A. 1 2 + 21
B. 16 + 17 2
C. 3
D. 3 10 2
Với giá trị nào của x, y thỏa mãn x^4+y^4=1 . Tìm GTLN của A = x^9+y^9.
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Cho x,y là các số thực dương thỏa mãn x+y+xy=3 tìm các giá trị lớn nhất của biểu thức
\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\)
\(3=x+y+xy\le\sqrt{2\left(x^2+y^2\right)}+\dfrac{x^2+y^2}{2}\)
\(\Rightarrow\left(\sqrt{x^2+y^2}-\sqrt{2}\right)\left(\sqrt{x^2+y^2}+3\sqrt{2}\right)\ge0\)
\(\Rightarrow x^2+y^2\ge2\)
\(\Rightarrow-\left(x^2+y^2\right)\le-2\)
\(P=\sqrt{9-x^2}+\sqrt{9-y^2}+\dfrac{x+y}{4}\le\sqrt{2\left(9-x^2+9-y^2\right)}+\dfrac{\sqrt{2\left(x^2+y^2\right)}}{4}\)
\(P\le\sqrt{2\left(18-x^2-y^2\right)}+\dfrac{1}{4}.\sqrt{2\left(x^2+y^2\right)}\)
\(P\le\left(\sqrt{2}-1\right)\sqrt{18-x^2-y^2}+\sqrt[]{2}\sqrt{\dfrac{\left(18-x^2-y^2\right)}{2}}+\dfrac{1}{2}\sqrt{\dfrac{x^2+y^2}{2}}\)
\(P\le\left(\sqrt{2}-1\right).\sqrt{18-2}+\sqrt{\left(2+\dfrac{1}{4}\right)\left(\dfrac{18-x^2-y^2+x^2+y^2}{2}\right)}=\dfrac{1+8\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(x=y=1\)
bài 1:
a) Tìm các cẶP số nguyên x; y thỏa mãn hệ thức: ( 2x - 1 ) (y + 4 ) = 11
b) Tìm các giá trị x;y nguyên thỏa mãn: xy = 3y - 5x = 9
11=1x11=11x1=-1x-11=-11x-1
TH1:
2x-1=1 y+4=11
2x=2 y=7
x=1
TH2:
2x-1=11 y+4=1
2x=12 y=-5
x=6
TH3:
2x-1=-1 y+4=-11
2x=-2 y=-15
x=-1
TH4:
2x-1=-11 y+4=-1
2x=-10 y=-5
x=-5
a)(2x-1)(y+4)=11
Ta có:11=1.11=11.1=(-1).(-11)=(-11).(-1)
Do đó ta có bảng sau:
y+4 | -11 | -1 | 1 | 11 |
2x-1 | -1 | -11 | 11 | 1 |
2x | 0 | -10 | 12 | 2 |
x | 0 | -5 | 6 | 1 |
y | -15 | -5 | -3 | 7 |
Vậy các cặp (x;y) TM là:(0;-15)(-5;-5)(6;-3)(1;7)
cho x và y là 2 số dương thỏa mãn x+y=1 tìm giá trị nhỏ nhất của B=4/x+9/y
vì x y dương \(\Rightarrow\frac{4}{x}+\frac{9}{y}>=2\cdot\sqrt{\frac{36}{xy}}=2\cdot\frac{6}{\sqrt{xy}}=\frac{12}{\sqrt{xy}}\)(bđt cosi) dấu = xảy ra khi 4/x=9/y suy ra x= 4/9y và y=9/4x
\(\frac{4}{x}+\frac{9}{y}\)nhỏ nhất là \(\frac{12}{\sqrt{xy}}\)
\(\Rightarrow x+y=\frac{4}{9}y+y=\frac{13}{9}y=1\Rightarrow y=\frac{9}{13}\)
\(=x+\frac{9}{4}x=\frac{13}{4}x=1\Rightarrow x=\frac{4}{13}\)
\(\Rightarrow\frac{12}{\sqrt{xy}}=\frac{12}{\sqrt{\frac{9\cdot4}{13^2}}}=\frac{12}{\sqrt{\frac{36}{13^2}}}=\frac{12}{\frac{6}{13}}=12\cdot\frac{13}{6}=26\)
vậy b nhỏ nhất là 26 khi x=4/13 và y = 9/13
1.tìm giá trị của x,y thỏa mãn (5/x)=(1/6)+(y/3)
2.tìm giá trị x nhỏ nhất thỏa mãn x chia hết cho 9 và x+1 chia hết cho 25
Cho các số thực x,y thỏa mãn : x^2/9 + y^2/16 = 36 . Tìm giá trị nhỏ nhất và giá trị lớn nhất P = x - y + 2020
Cho các số thực x,y thỏa mãn : x^2/9 + y^2/16 = 36 . Tìm giá trị nhỏ nhất và giá trị lớn nhất P = x - y + 2020
Cho các số thực x,y thỏa mãn : x^2/9 + y^2/16 = 36 . Tìm giá trị nhỏ nhất và giá trị lớn nhất P = x - y + 2020