Tìm điều kiện để \(\sqrt{2-3x}\) có nghĩa
Tìm điều kiện x để các biểu thức sau có nghĩa
\(\sqrt{x-5}\) \(\dfrac{1}{\sqrt{3x-2}}\)
`sqrt(x-5)` có nghĩa khi:
`x-5 ≥0`
`=> x ≥5`
Vậy `x≥5` thì `sqrt(x-5` có nghĩa
____________
`1/(sqrt(3x-2))` có nghĩa khi
`1/(sqrt(3x-2)) ≥0`
`⇒ 3x-2≥0`
` ⇒3x≥2`
` ⇒x≥2/3`
Vậy `x ≥2/3` thì `1/(sqrt(3x-2))` có nghĩa
tìm điều kiện của x để biểu thức A= \(\sqrt{4-3x}-\sqrt[3]{x+1}\) có nghĩa
biểu thứ A có ý nghĩa khi \(\sqrt{4-3x}\ge0\\=>4-3x\ge0\\ =>3x\ge4=>x\ge\dfrac{4}{3}\)
\(\frac{\sqrt{-3x}}{x^2-1}\) Tìm điều kiện để căn thức có nghĩa
\(\frac{\sqrt{-3x}}{x^2-1}\)
Điều kiện để căn thức có nghĩa là :
\(\hept{\begin{cases}x^2-1\ne0\\-3x\ge0\end{cases}}< =>\hept{\begin{cases}x\ne\pm1\\x\le0\end{cases}}\)
Tìm điều kiện để biểu thức có nghĩa
\(\sqrt{\frac{7-3x}{X^4+1}}\)
\(\frac{7-3x}{x^4+1}\ge0do:x^4\ge0\Rightarrow x^4+1>0\Rightarrow\frac{7-3x}{x^4+1}\ge0\Leftrightarrow7-3x\ge0\Leftrightarrow x\le\frac{7}{3}\)
gảerrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
Bạn Nguyễn Hiếu Quang không biết làm thì đừng có xen vào
b/
tìm điều kiện có nghĩa của biểu thức \(B=\dfrac{1}{3x^2-9}+\sqrt{1-2x}\)
ĐKXĐ : \(\left\{{}\begin{matrix}3x^2-9\ne0\\1-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2\ne3\\-2x\ge-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\pm\sqrt{3}\\x\le\dfrac{1}{2}\end{matrix}\right.\)
tìm điều kiện để sqrt(5/(x^2+4*x+4)) có nghĩa
Ta có \(\dfrac{5}{x^2+4x+4}=\dfrac{5}{\left(x+2\right)^2}\)
Để biểu thức có nghĩa thì \(\left(x+2\right)^2\ne0\Leftrightarrow x+2\ne0\Leftrightarrow x\ne-2\)
Tìm điều kiện để biểu thức sau có nghĩa:
\(\dfrac{1}{2}\sqrt{x+3}-x\sqrt{1-x}\)
ĐK:\(\left\{{}\begin{matrix}x+3\ge0\\1-x\ge0\end{matrix}\right.\)\(\Leftrightarrow-3\le x\le1\)
Để biểu thức có nghĩa thì \(\left\{{}\begin{matrix}x+3>0\\1-x>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-3\\x< 1\end{matrix}\right.\Leftrightarrow-3< x< 1\)
Biểu thức trên có nghĩa khi \(\left\{{}\begin{matrix}x+3\ge0\\1-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x\le1\end{matrix}\right.\)
\(\sqrt{\frac{3x+1}{10}}\) Tìm điều kiện xác định của x để căn thức sau có nghĩa (xác định)
Biểu thức trong căn thức \(\sqrt{\frac{3x+1}{10}}\)phải lớn hơn hoặc bằng 0
Căn thức có nghĩa\(\Leftrightarrow3x+1\ge0\Leftrightarrow x\ge\frac{-1}{3}\)
cho A =\(\frac{x^4+2x^2-3}{3x^3-x^2-3x+1}\)
a) tìm điều kiện của x để A có nghĩa
b) tìm điều kiện của x để A âm
a) Để A có nghĩa thì :
\(3x^3-x^2-3x+1\ne0\)
\(\Leftrightarrow x^2\left(3x-1\right)-\left(3x-1\right)\ne0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-1\right)\ne0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)\left(x+1\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne1\\x\ne-1\end{cases}}\)
ĐKXĐ : \(\hept{\begin{cases}x\ne\frac{1}{3}&x\ne\pm1&\end{cases}}\)