Cho x 2 − 2 ( m + 1 ) x + 6 m − 2 x − 2 = x − 2 1 . Với m là bao nhiêu thì (1) có nghiệm duy nhất
A. m > 1
B. m ≥ 1
C. m ≤ 1
D. m ≤ 1 hoặc m = 3 2
Cho pt : x2 + 2(m+1)x - 2m4 +m2 =0
a, giải pt khi m=1
b, tìm m để pt có 2 nghiệm x1, x2 sao cho (m-1)x1 +x1x2 + (m-1)x2 = -1
Lời giải:
a)
Khi $m=1$ thì pt trở thành:
$x^2+4x-1=0$
$\Leftrightarrow (x+2)^2=5\Rightarrow x+2=\pm \sqrt{5}$
$\Rightarrow x=-2\pm \sqrt{5}$
b)
Để pt có 2 nghiệm pb $x_1,x_2$ thì:
$\Delta'=(m+1)^2-(-2m^4+m^2)>0\Leftrightarrow 2m^4+2m+1>0(*)$
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=-2(m+1)\\ x_1x_2=-2m^4+m^2\end{matrix}\right.\)
Khi đó:
$(m-1)x_1+x_1x_2+(m-1)x_2=-1$
$\Leftrightarrow (m-1)(x_1+x_2)+x_1x_2=-1$
$\Leftrightarrow -2(m-1)(m+1)+(-2m^4+m^2)=-1$
$\Leftrightarrow -2m^4-m^2+3=0$
$\Leftrightarrow (1-m^2)(2m^2+3)=0$
$\Rightarrow m^2=1\Rightarrow m=\pm 1$
Thay vào $(1)$ thấy 2 giá trị đều thỏa mãn.
Bài 1. Cho pt: x2 -2mx + m-9 (1)
1. Giải pt 1 với m =-2
2. Tìm m để pt (1) có 2 nghiệm phân biệt x1; x2 sao cho x12 + x2 ( x1 + x2 ) =2
Bài 2. Cho pt: x2- 2mx+ 2m-10 =0
1. Giải pt 1 với m=2
2. tìm m để pt 1 có 2 nghiệm phân biệt x1; x2 sao cho 2x1+ x2 =-4
1. Cho x2 +y2 =1. Tìm min A= (3-x) (3-y).
2. cho x,y >0, 2xy-4= x+y. Tìm min P=xy+ 1/ x2 +1/ y^2.
3.Cho x>=3, y>= 3. Tìm min A= 21*(x+1/y) +3*(y+1/x).
4. Cho x,y >0, x^2+ y^2= 1.Tìm min x+y+1/x+1/y.
5. Cho a,b>0, a+b+3ab=1. Tìm min A= 6ab/ (a+b) -a^2-b^2
cho biểu thức M=(x^2-2x/2x^2+8-2x^2/8-4x+2x^2-x^3)(1-1/x-2/x^2)
rút gọn M
tính gtrij của M sao cho x=1/2
1) Cho phuong trinh x+m / x+1 + x-2 / x = 2. De phuong trinh vo nghiem thi: A. m = 1 hoac m = 3 B. m = -1 hoac m = -3 C. m =2 hoac m=-2 D. m = -1/3 hoac m = 1/2
1. Cho M = \(\left(\frac{5x+2}{x^2-10x}+\frac{5x-2}{x^2+10x}\right)\frac{x^2-100}{x^2+4}\)
tìm x để M có nghĩa
2. Cho N = \(\frac{1}{x^2-2x+1}-\left(\frac{x}{x^2-1}-\frac{1}{x^3-x}\right):x^2-2x+1\)
Tìm TXĐ của N
cho 2 da thuc:f(x)=x^2+3mx+m^2 va g(x)=x^2+(2m-1)x+m^2. tim m de f(1)=g(1)
Lời giải:
\(f(x)=x^2+3mx+m^2\Rightarrow f(1)=1+3m+m^2\)
\(g(x)=x^2+(2m-1)x+m^2\Rightarrow g(1)=1+(2m-1)+m^2=m^2+2m\)
Để \(f(1)=g(1)\Leftrightarrow 1+3m+m^2=m^2+2m\)
\(\Leftrightarrow 1+m=0\Leftrightarrow m=-1\)
Vậy \(m=-1\)
\(\left\{{}\begin{matrix}f\left(x\right)=x^2+3mx+m^2\\g\left(x\right)=x^2+\left(2m-1\right)x+m^2\end{matrix}\right.\)
\(h\left(x\right)=f\left(x\right)-g\left(x\right)=\left[3m-\left(2m-1\right)\right]x=\left(m+1\right)x\)
\(f\left(1\right)=g\left(1\right)\Rightarrow f\left(1\right)-g\left(1\right)=0\Rightarrow h\left(1\right)=0\)
\(\Rightarrow\left(m+1\right).1=0\Rightarrow m=-1\)
Cho 2 đa thức
P(x)=\(x^2+2mx+m^2\)
Q(x)=\(x^2+\left(2m+1\right)x+m^2\)
Tìm m biết P(1)=Q(-1)
\(P\left(1\right)=Q\left(-1\right)\)
\(\Leftrightarrow1^2+2m+m^2=\left(-1\right)^2+\left(2m+1\right)\cdot\left(-1\right)+m^2\)
\(\Leftrightarrow m^2+2m+1=m^2-2m-1+1\)
=>2m+1=-2m
=>4m=-1
hay m=-1/4