Giá trị lớn nhất của biểu thức P = sin 4 x + cos 4 x + sin x . cos x là:
A. 2
B. 1
C. 9 8
D. 2
TÌM GIÁ TRỊ LỚN NHẤT VÀ NHỎ NHẤT CỦA BIỂU THỨC:
a/ A=cos4x-cos2x+sin2x
b/ B=sin4x-sin2x+cos2x
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức:
a) A= cos4x - cos2x + sin2x
b) B= sin4x - sin2x + cos2x
tìm giá trị lớn nhất và giá trị nhỏ nhất của các biểu thức sau :
a) \(\sin^2x+\sin x\cos x+3\cos^2x\)
b) \(A\sin^2x+B\sin x\cos x+C\cos^2x\) (A , B , C là các hằng số )
tìm giá trị lớn nhất và giá trị nhỏ nất của mỗi biểu thức sau :
a) \(\sin^2x+\sin x\cos x+3\cos^2x\)
b) \(A\sin^2x+B\sin x\cos x+C\cos^2x\) (A , B ,C là các hằng số)
Cho cos x + sin x = 3/4. Tính giá trị biểu thức A= |sin x - cos x|
Ta có \(2\sin x\cos x=\left(\sin x+\cos x\right)^2-\left(\sin^2x+\cos^2x\right)\)
\(=\left(\dfrac{3}{4}\right)^2-1=-\dfrac{7}{16}\)
Từ đó \(A=\left|\sin x-\cos x\right|\)
\(\Rightarrow A^2=\left(\sin x-\cos x\right)^2\)
\(A^2=\sin^2x+\cos^2x-2\sin x\cos x\)
\(A^2=1+\dfrac{7}{16}=\dfrac{23}{16}\)
\(\Rightarrow A=\dfrac{\sqrt{23}}{4}\) (do \(A\ge0\))
Có \(\cos x+\sin x=\dfrac{3}{4}\)
\(\Leftrightarrow\left(\cos x+\sin x\right)^2=\dfrac{9}{16}\)
\(\Leftrightarrow2.\sin x.\cos x+1=\dfrac{9}{16}\)
\(\Leftrightarrow\sin x.\cos x=-\dfrac{7}{32}\)
Lại có \(\left(\cos x+\sin x\right)^2=\left(\cos x-\sin x\right)^2+4.\sin x.\cos x=\dfrac{9}{16}\)
\(\Leftrightarrow\left(\cos x-\sin x\right)^2=\dfrac{23}{16}\)
\(\Leftrightarrow\left|\sin x-\cos x\right|=\dfrac{\sqrt{23}}{4}\)
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = cos x + 2 . sin x + 3 2 . cos x - sin x + 4 . Tính M,m
A. 4/11
B. 3/4
C. 1/2
D. 20/11
tìm giá trị lớn nhất và giá trị nhỏ nhất của các biểu thức sau :
a) \(a\sin x+b\cos x\) ( a và b là các hằng số , \(a^2+b^2\) khác 0 )
b) \(\sin^2x+\sin x\cos x+3\cos^2x\)
c) \(A\sin^2x+B\sin x\cos x+C\cos^2x\) (A , B , C là các hằng số )
heo me tim gtnn gtln cua bieu thuc:asinx + bcosx (a,b la hang so,a^2+b^2=/o)? | Yahoo Hỏi & Đáp
Cho sin x + cos x =5/4 . Tính giá trị của biểu thức : A = sin x . cos x , B = sin x - cos x
\(\left(sinx+cosx\right)^2=\frac{25}{16}\Rightarrow1+2sinx.cosx=\frac{25}{16}\)
\(\Rightarrow sinx.cosx=\frac{9}{32}\)
\(\left(sinx-cosx\right)^2=\left(sinx+cosx\right)^2-4sinx.cosx=\frac{25}{16}-4.\frac{9}{32}=\frac{7}{16}\)
\(\Rightarrow sinx-cosx=\pm\frac{\sqrt{7}}{4}\)