điều kiện xác định của pt
\(\frac{1}{x^2+1}=0\)
a Với x thuộc R b x = +- 1 c x = -1
d x = 1
R=\(\orbr{\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}}\)] : \(\frac{x^2+x}{x^3+x}\)
a, Tìm điều kiện của x để biểu thức xác định
b, Tìm x để : R = 0
c, Tìm x để : [ R] = 1
Cho biểu thức: Q= \([\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right).\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}]\)
a, Tìm điều kiện xác định của biểu thức
b, Rút gọn Q
c, Chứng minh rằng với các giá trị của x thỏa mãn điều kiện xác định thì -5 <= Q <= 0
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)
bài 1 : cho biểu thức:
K=\(\left(\frac{1}{x-1}-\frac{1}{x+1}\right).\frac{x^2-1}{x^2-1+1}\)
a, tìm điều kiện của x để xác định
b, rút gọn biểu thức K và tìm giá trị của x để K lớn nhất
bài 2: cho biểu thức( chỉ cho mình câu c thôi)
L=\(\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x+1}{x^2-1}\right).\frac{x+2003}{x}\)
a, tìm điều kiện đối với x để L xác định
b, rút gọn
c, với giá trị nguyên nào của x thì L xác định
Bài 1 : Điều kiện xác định : \(x\ne\pm1\)
\(K=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2-1}{x^2}\)
\(K=\frac{2}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{x^2}=\frac{2}{x^2}\)
Nhận thấy giá trị của x càng tăng thì giá trị của M càng giảm
mặt khác , giá trị của x lại không giảm quá 0 nên ta không thể nào xác định được giá trị lớn nhất của K
Cho biểu thức: \(A=\left(\frac{x}{x+1}+\frac{1}{1-x}\right):\left(\frac{2x+2}{x-1}-\frac{4x}{x^2-1}\right)\)
a) Tìm điều kiện của x để giá trị của biểu thức được xác định.
b) Chứng minh rằng với điều kiện đó, giá trị của biểu thức không phụ thuộc vào biến.
1. P=\(\frac{4x^{2\:}+4x}{\left(x+1\right)\left(2x-6\right)}\)
a) Tìm điều kiện xác định của P
b) Tìm giá trị của x để P=1
2. P=\(\frac{3}{x+2}+\frac{1}{x-2}-\frac{8}{4-x^2}\)
a) Tìm điều kiện xác định P
b) Rút gọn biểu thức P
c) Tính giá trị của x để P=4
3. P=(\(\frac{1}{x-1}-\frac{x}{1-x^3}.\frac{x^2+x+1}{x+1}\)):\(\frac{2x+1}{x^2+2x+1}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tính giá trị của P khi x=\(\frac{1}{2}\)
Các bạn giúp mình với nha, cảm ơn trước ạ
Câu 1 :
a) ĐKXĐ : \(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b) Để \(P=1\Leftrightarrow\frac{4x^2+4x}{\left(x+1\right)\left(2x-6\right)}=1\)
\(\Leftrightarrow\frac{4x^2+4x-\left(x+1\right)\left(2x-6\right)}{\left(x+1\right)\left(2x-6\right)}=0\)
\(\Rightarrow4x^2+4x-2x^2+4x+6=0\)
\(\Leftrightarrow2x^2+8x+6=0\)
\(\Leftrightarrow x^2+4x+4-1=0\)
\(\Leftrightarrow\left(x+2-1\right)\left(x+2+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+3=0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x=-1\left(KTMĐKXĐ\right)\\x=-3\left(TMĐKXĐ\right)\end{cases}}\)
Vậy : \(x=-3\) thì P = 1.
D= \(\left(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\right):\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)
a) tìm điều kiện của x để d xác định -rút gọn D
b) tìm các giá trị của c để d<0
c) tím giá trị của D khi x=\(4-2\sqrt{3}\)
tìm điều kiện xác định của x để giá trị của biểu thức xác định và chứng minh rằng với điều kiện đó biểu thức không phụ thuộc vào biến
a. \(\left(x-\frac{1}{x}\right):\left(\frac{x^2+2x+1}{x}-\frac{2x+2}{x}\right)\)
b. \(\left(\frac{x}{x+1}+\frac{1}{x-1}\right):\left(\frac{2x+2}{x-1}-\frac{4x}{x^2-1}\right)\)
c. \(\frac{1}{x-1}-\frac{x^{3-x}}{^{x^2+1}}.\left(\frac{x}{x^2-2x+1}-\frac{1}{x^2-1}\right)\)
d. \(\left(\frac{x}{x^2-36}-\frac{x-6}{x^2+6x}\right):\frac{2x-6}{x^2+6x}+\frac{x}{6-x}\)
TÌM ĐIỀU KIỆN CỦA X ĐỂ GIÁ TRỊ CỦA BIỂU THỨC ĐƯỢC XÁC ĐỊNH VÀ CMR VỚI ĐIỀU KIỆN ĐÓ BIỂU THỨC KHÔNG PHỤ THUỘC VÀO BIẾN:
\(\frac{x-\frac{1}{x}}{\frac{x^2+2x+1}{x}-\frac{2x-2}{x}}\)
\(P=\left(\frac{2x}{x^2-1}+\frac{x-1}{2x+2}\right):\frac{x+1}{2x}\)
a. tìm điều kiện xác định của P và rút gọn P
b. tìm x để P =2
c. với 0 < x < 1 . hãy so sánh P với |P|
a. tìm điều kiện xác định của P
ĐKXĐ: \(x\ne0;x\ne\pm1\)
\(P=\left(\frac{2x}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{2\left(x+1\right)}\right):\frac{x+1}{2x}\)
\(P=\frac{4x+\left(x-1\right)^2}{2\left(x-1\right)\left(x+1\right)}\times\frac{2x}{x+1}\)
\(P=\frac{4x+x^2-2x+1}{2\left(x-1\right)\left(x+1\right)}\times\frac{2x}{x+1}\)
\(P=\frac{x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\times\frac{x}{x+1}\)
\(P=\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}\times\frac{x}{x+1}\)
\(P=\frac{x}{x-1}\)
b. tìm x
Với P = 2 ta có:
\(\frac{x}{x-1}=2\)
=> x = 2(x-1)
=> x = 2x -2
=> 2x - x = 2
=> x = 2
Vậy với x = 2 thì P = 2
c. với 0 < x < 1 . hãy so sánh P với |P|
\(P=\frac{x}{x-1}\)
Với 0< x < 1 thì x -1 <0 ; x>0 => P <0
Suy ra P< |P| ( vì |P| >0)
Câu hỏi tương tự Đọc thêm Báo cáoToán lớp 8A. DE P XAC DINH
<=>X^2-1 KHÁC 0<=>X KHAC -1 VÀ X KHÁC 1
<=>2X+2 KHAC 0 <=>X KHAC-1
<=>2X KHAC 0 <=>X KHAC 0
=> X KHAC O HOAC X KHAC +-1
TACO:( 2X / X^2-1 +X-1/ 2X+2 ) : X+1 / 2X
=[2X . 2 / (X+1)(X-1). 2 + (X-1)(X-1) / 2(X+1)(X-1) ] : X+1/2X
=[4X+(X-1)^2] / 2(X+1)(X-1) :X+1 / 2X
=(4X+X^2-2X+1) / 2(X+1)(X-1) : X+1/2X
=X^2+2X+1 / 2(X-1)(X+1) : X+1 / 2X
=(X+1)^2 / 2(X-1)(X+1) : X+1/2X
=(X+1) / 2(X-1) . 2X/X+1
=X/X-1
B. DE P=2
<=>X/X-1=2
<=>X=2(X-1)=2X-2=X+X-2
TA CÓ: X +X-2 = X+0
=>X-2=0
=>X=2
C .VI 0<X<1
=>X / X-1 = |X/X-1|
=>P=|P|
Câu 8: Phương trình nào trong các phương trình sau có điều kiện xác định là x 2 A. 1 1 0 x 2 − = + B. 2 1 0 2 x x − − = + C. 1 1 0 x 2 − = − D. 2 1 0 x