Cho dãy số a, a+1,a+2,a+3,...,2a là số nguyên dương. CMR: có ít nhất 1 số chính phương
cho dãy số a,a+1,a+2,...2a với a là số nguyên dương Chứng minh rằng trong dãy số đã cho có ít nhất một số là số chính phương
1) Tìm các số nguyên dương x,y tm pt \(xy^2+2xy+x=32y\)
2) cho 2 STN a,b tm \(2a^2+a=3b^2+b\). CMR \(2a+2b+1\) là số chính phương
a.
\(\Leftrightarrow x\left(y+1\right)^2=32y\Leftrightarrow x=\dfrac{32y}{\left(y+1\right)^2}\)
Do y và y+1 nguyên tố cùng nhau \(\Rightarrow32⋮\left(y+1\right)^2\)
\(\Rightarrow\left(y+1\right)^2=\left\{4;16\right\}\)
\(\Rightarrow...\)
b.
\(2a^2+a=3b^2+b\Leftrightarrow2\left(a-b\right)\left(a+b\right)+a-b=b^2\)
\(\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)
Gọi \(d=ƯC\left(2a+2b+1;a-b\right)\)
\(\Rightarrow b^2\) chia hết \(d^2\Rightarrow b⋮d\) (1)
Lại có:
\(\left(2a+2b+1\right)-2\left(a-b\right)⋮d\)
\(\Rightarrow4b+1⋮d\) (2)
(1);(2) \(\Rightarrow1⋮d\Rightarrow d=1\)
\(\Rightarrow2a+2b+1\) và \(a-b\) nguyên tố cùng nhau
Mà tích của chúng là 1 SCP nên cả 2 số đều phải là SCP (đpcm)
Nhập vào số nguyên dương N (N ≤ 100) và dãy A gồm N số nguyên dương A1, A2, …, AN (Ai ≤2.1019). In ra màn hình số chính phương lớn nhất trong dãy A. Nếu trong dãy không có số chính phương nào thì in ra giá trị là -1
2) Cho một dãy số có số hạng đầu là 16 , các số hạng sau là số tạo thành bằng cách viết chèn số 15 vào chính giữa số hạng liền trước
16,1156,111556,….
CMR: mọi số hạng của dãy đều là số chính phuơng
3) CMR: ab+1 là số chính phuơng với a=11…12(11…1 là n số), b=11…14(11…1 là n số)
4) CMR với mọi số tự nhiên a, tốn tại số tự nhiên b sao cho ab+4 là số chính phương.
5)Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1, c là số gồm n chữ số 6. CMR a+b+c+8 là số chính phương
6)CMR tích 3 số nguyên dương liên tiếp không là lập phương của 1 số tự nhiên
6) (n-1)^3 < (n-1)n(n+1) = n(n^2 -1) = n^3-n < n^3
Cho các số nguyên dương a,b,c thoả mãn đẳng thức: a+b=b(a-c) và c+1 là bình phương của 1 số nguyên tố. Chứng minh ít nhất 1 trong 2 số: a+b và a.b là số chính phương.
Giải cho mik đi pls đó
1. Chứng minh rằng tích ba số nguyên dương liên tiếp không là lập phương của một số tự nhiên
2. CMR: A=\(\frac{1}{3}\left(11...1-33...3\right)00...0\)là lập phương của một số ( n chữ số 1, n chữ số 3 và n chữ số 0)
3. a) Cho a= 11...1 ( n chữ số 1 ), b= 1 00...0 5 ( n-1 chữ số 0). CMR: ab+1 là số chính phương.
b) Cho một dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách viết chèn số 15 vào chính giữa số hạng liền trước.
16, 1156, 111556,...
3. a) Coi A = ab+1
A = 111...11(n chữ số 1) .10n + 5 .111...11(n chữ số 1) + 1
\(A= \frac {10^n - 1} {9} + 5 \frac { 10^n -1} {9}+1
\)
\(A= \frac {10^2n - 10^n + 5.10^n -5 + 9} {9}\)
\(A =\frac {10^{2n} + 4.10^n + 4} {9}\)
\(A =\frac {(10^n + 2)^2} {3^2}\)
\(A=(\frac{10^n+2} {3}) ^2\)
Vậy A là số chính phương (vì 10n+2 chia hết cho 3)
b)Ta thấy 16 = 1.15 + 1
1156 = 11.105 + 1
111556 = 111.1005 + 1
... 111...1555...56(n chữ số 1,n-1 chữ số 5) = 111...1(n chữ số 1).100...05(n-1 chữ số 0) +1 (phần a)
Vẫy các số hạng trong dãy trên đều là số chính phương
3a)(dấu * là nhân nhé)
Có ab+1
=11...1*100...05+1
=11...1*(33...35(n-1 chữ số 3)*3)+1
=33...3*33...35+1
=33...3*(33...34+1)+1
=33...3*33...34+(33...3+1)
=33...3*33...34+33...34(n-1 chữ số 3)
=33...34*(33...3+1)
=33...34*33...34(n-1 chữ số 3)
=(33...34)^2 là số chính phương
1 ,
chung minh rang :
( n-1 ) ^ 3 < ( n - 1 ) n ( n +1 ) = n (n ^ 2 -1 ) = n ^3 -n < n^3
( viet hoi tat tu hieu nhe )
Bài 1: cho a b c d là các số nguyên dương chẵn thỏa mãn
a+b=c+d và ab-cd=-4.cmr abc chia hết cho 48
bài 2 : cmr ko tồn tại 5 số nguyên dương phân biệt sao cho tổng của 3 số bát kỳ là 1 số nguyên tố
bài 3: tim a thuộc Z+ để 2016^2017 + 2018^2019 chia hết cho (a^2 +a)(2+a)`
bài 4 tìm n thuộc n sao cho dãy n+9;2n+9;3n+9:..... ko có số chính phương.
(giải nhanh giúp mình trong tối nay nha mai mình đi học rồi rồi mình tích cho :) anigato)
Cho a,b là các số nguyên dương và A =\(\frac{a^2+b^2}{ab+1}\)là số nguyên .cmr A là số chính phương.
Cho a,b là các số nguyên dương thỏa điều kiện a(2a+1)=b(3b+1). Đặt M=2a+2b+1, chứng minh M là số chính phương
Bài 2 :
a, Cho các số a,b,c,d là các số nguyên dương đôi 1 khác nhau và thỏa mãn :
\(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\) . Chứng minh \(A=abcd\) là số chính phương
b, Tìm nguyên a để \(a^3-2a^2+7a-7\) chia hết cho \(a^2+3\)