Rút gọn phân thức:
a. x(y-x)+y(x-y)/3y^2-3x^2.
b.2x^2-xy-3y^2/2x^2-5xy+3y^2
Rút gọn biểu thức:
a) 2x(x-3y)+3y(2x + 5y)
b) (5x-3y)(2x+y)-x(10x-y)
c) (x-y)(x2+xy+y2)-(x+y)(x2-xy+y2)
a) 2x(x-3y)+3y(2x+5y)
=2x2-6xy+6xy+15y2
=2x2+15y2
b)(5x-3y)(2x+y)-x(10x-y)
=10x2+5xy-6xy-3y2-10x2+xy
=0
c)(x-y)(x2+xy+y2)-(x+y)(x2-xy+y2)
=x3-y3-(x3+y3)
=x3-y3-x3-y3
=-2y3
rút gọn biểu thức rồi tính giá trị biểu thức:
a)A=(2x+3y)(x2-xy+1)-x2(2x-y)-3x tại x=-1;y=2
b)B=2xy.(1/4x2-3y)+5y(xy-x3+1) tại x=1;y=1/2
Rút gọn biểu thức:
a) (x+y)^2+(x-y)^2+(x+y).(x-y)
b) (3x+y)^2+(x-3y)2-(2x+y).(2x-y)
c) 2(x-y).(x+y)+(x+y)^2+(x-y)^2
d)-2(x^2-9y^2)+(x-3y)^2+(x+3y)^2
a) \(\left(x+y\right)^2+\left(x-y\right)^2+\left(x+y\right)\left(x-y\right)\)
\(=x^2+2xy+y^2+x^2-2xy+y^2+x^2-y^2\)
\(=3x^2+y^2\)
b)\(\left(3x+y\right)^2+\left(3x-y\right)^2-\left(2x+y\right)\left(2x-y\right)\)
\(=9x^2+6xy+y^2+9x^2-6xy+y^2-4x^2+y^2\)
\(=14x^2+3y^2\)
c) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x-y+x+y\right)^2\)
\(=4x^2\)
d)\(-2\left(x^2-9y^2\right)+\left(x-3y\right)^2+\left(x+3y\right)^2\)
\(=\left(x+3y\right)^2-2\left(x+3y\right)\left(x-3y\right)+\left(x-3y\right)^2\)
\(=\left(x+3y-x+3y\right)^2=9y^2\)
Bài 1: Thực hiện phép tính
a) (x-4) (x+4) - (5-x) (x+1)
b) (3x^2 - 2xy + 4) + ( 5xy - 6x^2 - 7)
Bài 2: Rút gọn biểu thức
a) 3x^2 (2x + y) - 2y(4x^2 - y)
b) (x+3y) (x-2y) - (x^4 - 6x^2y^3): x^2y
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
Bài 2:
a, 3\(x^2\).(2\(x\) + y) - 2y(4\(x^2\) - y)
= 6\(x^3\) + 3\(x^2\).y - 8y\(x^2\) + 2y2
= 6\(x^3\) - (8\(x^2\)y - 3\(x^2\)y) + 2y2
= 6\(x^3\) - 5\(x^2\)y + 2y2
Rút gọn biểu thức:
A = (2x + y)2 + (2x - y)2 + (4x2 - y2) + 3y
B = (x - 2) (x + 2) - (x + 2)2
C = (3x - 4y)2 + (3x - 4y)2
\(A=\left(2x+y\right)^2+\left(2x-y\right)^2+\left(4x^2-y^2\right)+3y\\ =\left(4x^2+4xy+y^2\right)+\left(4x^2-4xy+y^2\right)+\left(4x^2-y^2\right)+3y\\ =4x^2+4x^2+4x^2+4xy-4xy+y^2+y^2-y^2+3y=12x^2+3y-y^2\\ B=\left(x-2\right)\left(x+2\right)-\left(x+2\right)^2\\ =\left(x+2\right)\left(x-2-x-2\right)=-4\left(x+2\right)=-4x-8\\ C=\left(3x-4y\right)^2+\left(3x-4y\right)^2\\ =\left(9x^2-24xy+16y^2\right)+\left(9x^2-24xy+16y^2\right)\\ =18x^2-48xy+32y^2\)
1.tìm điều kiện xác định của các bt sau
a,5x^2y/x+4 b,3x-2y/2x-1 c,5x^2/x(y-3) d,4x^3y/x^2-4y^2 e,2x+1/(5-x)(y+2)
2.rút gọn các phân thức
a,-12x^3y^2/-20x^2y^2 b,x^2+xy-x-y/x^2-xy-x+y c,7x^2-7xy/y^2-x^2 d,7x^2+14x+7/3x^2+3x e,3y-2-3xy+2x/1-3x-x^3+3x^2
f,x^10-x^8+x^6-x^4+x^2+1/x^4-1 g,x^2+7x+12/x^2+5x+6
Bài 1:
a: ĐKXĐ: \(x+4\ne0\)
=>\(x\ne-4\)
b: ĐKXĐ: \(2x-1\ne0\)
=>\(2x\ne1\)
=>\(x\ne\dfrac{1}{2}\)
c: ĐKXĐ: \(x\left(y-3\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne0\\y-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\y\ne3\end{matrix}\right.\)
d: ĐKXĐ: \(x^2-4y^2\ne0\)
=>\(\left(x-2y\right)\left(x+2y\right)\ne0\)
=>\(x\ne\pm2y\)
e: ĐKXĐ: \(\left(5-x\right)\left(y+2\right)\ne0\)
=>\(\left\{{}\begin{matrix}x\ne5\\y\ne-2\end{matrix}\right.\)
Bài 2:
a: \(\dfrac{-12x^3y^2}{-20x^2y^2}=\dfrac{12x^3y^2}{20x^2y^2}=\dfrac{12x^3y^2:4x^2y^2}{20x^2y^2:4x^2y^2}=\dfrac{3x}{5}\)
b: \(\dfrac{x^2+xy-x-y}{x^2-xy-x+y}\)
\(=\dfrac{\left(x^2+xy\right)-\left(x+y\right)}{\left(x^2-xy\right)-\left(x-y\right)}\)
\(=\dfrac{x\left(x+y\right)-\left(x+y\right)}{x\left(x-y\right)-\left(x-y\right)}=\dfrac{\left(x+y\right)\left(x-1\right)}{\left(x-y\right)\left(x-1\right)}\)
\(=\dfrac{x+y}{x-y}\)
c: \(\dfrac{7x^2-7xy}{y^2-x^2}\)
\(=\dfrac{7x\left(x-y\right)}{\left(y-x\right)\left(y+x\right)}\)
\(=\dfrac{-7x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}=\dfrac{-7x}{x+y}\)
d: \(\dfrac{7x^2+14x+7}{3x^2+3x}\)
\(=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
e: \(\dfrac{3y-2-3xy+2x}{1-3x-x^3+3x^2}\)
\(=\dfrac{3y-2-x\left(3y-2\right)}{1-3x+3x^2-x^3}\)
\(=\dfrac{\left(3y-2\right)\left(1-x\right)}{\left(1-x\right)^3}=\dfrac{3y-2}{\left(1-x\right)^2}\)
g: \(\dfrac{x^2+7x+12}{x^2+5x+6}\)
\(=\dfrac{\left(x+3\right)\left(x+4\right)}{\left(x+3\right)\left(x+2\right)}\)
\(=\dfrac{x+4}{x+2}\)
phân tích thành nhân tử
\(xy-3x-y^2 +3y\)
\(x^2 +2x-xy-2y\)
\(x^2 +5xy+x+5y\)
1.Rút gọn
a) ( x - 3 ) . ( x + 2) - (2x^3 - 2x^2 - 10x ) : 2x
b) B= ( - 4x^3y^y^2+ x^3y^4 ) : 2xy^2 - xy . ( 2x - xy )
a)=(x^2-x-6)-(x^2-x-5)
=x^2-x-6-x^2+x+5
=-1
b)đề bài kì cục
Rút gọn các biểu thức sau:
a) ( x + y)2 + (x - y)2 b) ( x + y)2 + (x - y)2 + 2( x+ y) ( x- y)
c) (2+3y)2-(2x-3y)2-12xy d) ( 3x + 1)2 - (3x - 1)2
e)(x+1)(x2-x+1)-(x-1)(x2+x+1)
a: \(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)
b: \(=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
d: \(=9x^2+6x+1-9x^2+6x-1=12x\)
Rút gọn các biểu thức sau:
a) ( x + y)2 + (x - y)2 b) ( x + y)2 + (x - y)2 + 2( x+ y) ( x- y)
c) (2+3y)2-(2x-3y)2-12xy d) ( 3x + 1)2 - (3x - 1)2
e)(x+1)(x2-x+1)-(x-1)(x2+x+1)
a: \(=x^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2\)
e: \(=x^3+1-x^3+1=2\)