(x+1)^2/-5=25/x+1
1, (2x-5)62=x(2x-5)
2, x^2- 25=x(2x-5)
3, 25(x-2)^2=16(3x+1)^2
|x+25|+|−y+5|=0
⇒|x+25|=0 và |−y+5|=0
+) |x+25|=0
⇒x+25=0
⇒x=−25
+) |−y+5|=0
⇒−y+5=0
⇒−y=−5
⇒y=5
Vậy cặp số (x;y) là (−25;5)
Những câu b-f thì chia ra làm 2 vế rồi tính
g thì tìm ước rồi lập bảng trường hợp trong ước
h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42
⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)
Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}
Ta có một số trường hợp sau :
2x−12x−1 | 1 | -1 | 2 | -2 | 3 | -3 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
(4y−2)=2(2y−1)(4y−2)=2(2y−1) | -1 | 1 | -2 | 2 | -|x+25|+|−y+5|=0 ⇒|x+25|=0 và |−y+5|=0 +) |x+25|=0 ⇒x+25=0 ⇒x=−25 +) |−y+5|=0 ⇒−y+5=0 ⇒−y=−5 ⇒y=5 Vậy cặp số (x;y) là (−25;5)
Những câu b-f thì chia ra làm 2 vế rồi tính g thì tìm ước rồi lập bảng trường hợp trong ước
h. (2x−1).(4y−2)=−42(2x−1).(4y−2)=−42 ⇒{2x−1∈Ư(−42)4y−2∈Ư(−42)⇒{2x−1∈Ư(−42)4y−2∈Ư(−42) Mà: Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42}Ư(−42)∈{±1;±2;±3;±6;±7;±21;±42} Ta có một số trường hợp sau :
|
1/ (\(\left(-\dfrac{2}{3}\right)\)\(^2\) x \(\dfrac{-9}{8}\) - 25% x \(\dfrac{-16}{5}\)
2/ -1\(\dfrac{2}{5}\) x 75% + \(\dfrac{-7}{5}\) x 25%
3/ -2\(\dfrac{3}{7}\) x (-125%) + \(\dfrac{-17}{7}\) x 25%
4/ (-2)\(^3\) x (\(\dfrac{3}{4}\) x 0.25) : (2\(\dfrac{1}{4}\) - 1\(\dfrac{1}{6}\))
1) Ta có: \(\left(-\dfrac{2}{3}\right)^2\cdot\dfrac{-9}{8}-25\%\cdot\dfrac{-16}{5}\)
\(=\dfrac{4}{9}\cdot\dfrac{-9}{8}-\dfrac{1}{4}\cdot\dfrac{-16}{5}\)
\(=\dfrac{-1}{2}+\dfrac{4}{5}\)
\(=\dfrac{-5}{10}+\dfrac{8}{10}=\dfrac{3}{10}\)
2) Ta có: \(-1\dfrac{2}{5}\cdot75\%+\dfrac{-7}{5}\cdot25\%\)
\(=\dfrac{-7}{5}\cdot\dfrac{3}{4}+\dfrac{-7}{5}\cdot\dfrac{1}{4}\)
\(=\dfrac{-7}{5}\left(\dfrac{3}{4}+\dfrac{1}{4}\right)=-\dfrac{7}{5}\)
3) Ta có: \(-2\dfrac{3}{7}\cdot\left(-125\%\right)+\dfrac{-17}{7}\cdot25\%\)
\(=\dfrac{-17}{7}\cdot\dfrac{-5}{4}+\dfrac{-17}{7}\cdot\dfrac{1}{4}\)
\(=\dfrac{-17}{7}\cdot\left(\dfrac{-5}{4}+\dfrac{1}{4}\right)\)
\(=\dfrac{17}{7}\)
4) Ta có: \(\left(-2\right)^3\cdot\left(\dfrac{3}{4}\cdot0.25\right):\left(2\dfrac{1}{4}-1\dfrac{1}{6}\right)\)
\(=\left(-8\right)\cdot\left(\dfrac{3}{4}\cdot\dfrac{1}{4}\right):\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
\(=\left(-8\right)\cdot\dfrac{3}{16}:\dfrac{54-28}{24}\)
\(=\dfrac{-3}{2}\cdot\dfrac{24}{26}\)
\(=\dfrac{-72}{52}=\dfrac{-18}{13}\)
a) (-1,25).17/21.(-0,4).7/34
b)0,5\(^{^{x+1}}\) + 0,5\(^x\) = 1,5
c) x:20-25%x=-1\(\dfrac{1}{5}\)
d) (x-1)\(^2\) =1
e) 5\(^3\) : 25+2\(^4\) :4
a: \(=\dfrac{5}{4}\cdot\dfrac{2}{5}\cdot\dfrac{17}{21}\cdot\dfrac{7}{34}=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot\dfrac{1}{3}=\dfrac{1}{12}\)
b: =>0,5^x(0,5+1)=1,5
=>0,5^x=1
=>x=0
c: =>x*0,05-0,25*x=-1,2
=>-0,3*x=-1,2
=>x=4
d: =>x-1=1 hoặc x-1=-1
=>x=0 hoặc x=2
e: =5+4=9
Tìm x
a) 2x+3/24 = 3x-1/32
b) x+1/x-2 = 5/6
c) -(x+1)/25 = -4/x+1
d) (5-x).2/25 = -2/x-5
e) x+1/x+4 = x-3/x-2
Tìm X
a) \(2x+\dfrac{3}{24}=3x-\dfrac{1}{32}\)
\(\Leftrightarrow\left(2x+\dfrac{3}{24}\right)-\left(3x-\dfrac{1}{32}\right)=0\)
\(\Leftrightarrow2x+\dfrac{3}{24}-3x+\dfrac{1}{32}=0\)
\(\Leftrightarrow\left(\dfrac{3}{24}+\dfrac{1}{32}\right)+\left(2x-3x\right)=0\)
\(\Leftrightarrow\dfrac{5}{32}-x=0\)
\(\Leftrightarrow x=\dfrac{5}{32}\)
Giúp mình với!
1) 2x/x-1 -1/x+2 =2
2) x/x2-25 - 1-x/x-5 = 1/x+5
1) ĐKXĐ: \(x\notin\left\{1;-2\right\}\)
Ta có: \(\dfrac{2x}{x-1}-\dfrac{1}{x+2}=2\)
\(\Leftrightarrow\dfrac{2x\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\dfrac{x-1}{\left(x-1\right)\left(x+2\right)}=\dfrac{2\left(x-1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
Suy ra: \(2x^2+4x-x+1=2\left(x^2+x-2\right)\)
\(\Leftrightarrow2x^2+3x+1=2x^2+2x-4\)
\(\Leftrightarrow2x^2+3x+1-2x^2-2x+4=0\)
\(\Leftrightarrow x+5=0\)
hay x=-5(thỏa ĐK)
Vậy: S={-5}
2) ĐKXĐ: \(x\notin\left\{5;-5\right\}\)
Ta có: \(\dfrac{x}{x^2-25}-\dfrac{1-x}{x-5}=\dfrac{1}{x+5}\)
\(\Leftrightarrow\dfrac{x}{\left(x-5\right)\left(x+5\right)}+\dfrac{\left(x-1\right)\left(x+5\right)}{\left(x-5\right)\left(x+5\right)}=\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}\)
Suy ra: \(x+x^2+5x-x-5=x-5\)
\(\Leftrightarrow x^2+5x-5-x+5=0\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
Vậy: S={0;-4}
a/ ĐKXĐ : \(x\ne1;-2\)
\(\dfrac{2x}{x-1}-\dfrac{1}{x+2}=2\)
\(\Leftrightarrow\dfrac{2x\left(x+2\right)-\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}=2\)
\(\Leftrightarrow2x^2+3x-x+1=2x^2+4x-2x-4\)
\(\Leftrightarrow2x+1=2x-4\)
\(\Leftrightarrow1=-4\left(loại\right)\)
Vậy...
b/ĐKXĐ : \(x\ne\pm5\)
\(\dfrac{x}{x^2-25}-\dfrac{1-x}{x-5}=\dfrac{1}{x+5}\)
\(\Leftrightarrow\dfrac{x}{\left(x-5\right)\left(x+5\right)}+\dfrac{\left(x-1\right)\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}=\dfrac{x-5}{\left(x+5\right)\left(x-5\right)}\)
\(\Leftrightarrow x+x^2+5x-x-5=x-5\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy...
Tính thuận tiện nhất :
*Lưu ý : Trình bài đầy đủ *
1) 2/5 x 3/4 + 3/4 x 3/5
2) 41/25 x 1/2 - 16/25 x 1/2
3) 4/5 : 3/5 - 2/3 : 3/5
1)
2/5x3/4+3/4x3/5
= 3/10+9/20
=6/20+9/20
=3/4
1)
2/5x3/4+3/4x3/5
= 3/10+9/20
=6/20+9/20
2)
= 41/50-8/25
=41/50-16/50
=1/2
3)
=4/3-10/9
=12/9-10/9
=2/9
=3/4
ngan:3
tìm x biết:
(3x-1) [- 1/2x+5]=0
1/4+1/3:(2x-1)=-5
[2x+3/5]2 - 9/25=0
-5(x+1/5)-1/2(x-2/3)=3/2x - 5 /6
[x+1/2]x [2/3-2x]=0
17/2-|2x-3/4|=-7/4
2/3x-1/2x =5/12
(x+1/5)2+17/25=26/25
[x.44/7+3/7].11/5-3/7=-2
3[3x-1/2]+1/9=0
tìm x biết:
(3x-1) [- 1/2x+5]=0
1/4+1/3:(2x-1)=-5
[2x+3/5]2 - 9/25=0
-5(x+1/5)-1/2(x-2/3)=3/2x - 5 /6
[x+1/2]x [2/3-2x]=0
17/2-|2x-3/4|=-7/4
2/3x-1/2x =5/12
(x+1/5)2+17/25=26/25
[x.44/7+3/7].11/5-3/7=-2
3[3x-1/2]+1/9=0
Toán lớp 6Tìm x
Trả lời Câu hỏi tương tự
Chưa có ai trả lời câu hỏi này,bạn hãy là người đâu tiên giúp nguyenvanhoang giải bài toán này !
Cho biểu thức: A = x+3√x/x-25 + 1/√x+5; B = √x-5/√x+2 (điều kiện: x ≥ 0, x ≠ 25). P = √x-1/√x+2
Tìm x để P > 1/3
P>1/3
=>P-1/3>0
=>\(\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{1}{3}>0\)
=>\(\dfrac{3\sqrt{x}-3-\sqrt{x}-2}{3\left(\sqrt{x}+2\right)}>0\)
=>2 căn x-5>0
=>x>25/4
a) 25 - y^2 = 8(x+2009)^2 \Leftrightarrow 8(x+2009)^2 + y^2 = 25
Do y^2 \geq 0 \Rightarrow (x+2009)^2 \leq 25/8
\Rightarrow x+2009 =0 hoặc 1
Nếu x+2009 = 1 \Rightarrow 25 - y^2 = 1\Rightarrow y^2 = 26 (không tìm được y)
Nếu x+2009 = \Rightarrow 25 - y^2 = 0\Rightarrow y^2 = 25, y=5
Vậy (x=0;y=5)