a) Tìm m để ptvn
Cos^2x + 3sinxcosx +2sin^2x= 3m+1
b)sin4xsin2x=cos3xcos6x
Tìm Min, Max:
\(y=2Sin^2x+3SinxCosx+Cos^2x\)
\(y=2sin^2x+3sinx.cosx+cos^2x\)
\(=-\left(1-2sin^2x\right)+\dfrac{3}{2}sin2x+\dfrac{1}{2}\left(2cos^2x-1\right)+\dfrac{1}{2}\)
\(=-cos2x+\dfrac{3}{2}sin2x+\dfrac{1}{2}cos2x+\dfrac{1}{2}\)
\(=\dfrac{3}{2}sin2x-\dfrac{1}{2}cos2x+\dfrac{1}{2}\)
\(=\dfrac{\sqrt{10}}{2}\left(\dfrac{3}{\sqrt{10}}sin2x-\dfrac{1}{\sqrt{10}}cos2x\right)+\dfrac{1}{2}\)
\(=\dfrac{\sqrt{10}}{2}sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)+\dfrac{1}{2}\)
Vì \(sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)\in\left[-1;1\right]\)
\(\Rightarrow y=\dfrac{\sqrt{10}}{2}sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)+\dfrac{1}{2}\in\left[-\dfrac{\sqrt{10}}{2}+\dfrac{1}{2};\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\right]\)
\(\Rightarrow y_{min}=-\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\Leftrightarrow sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)=-1\Leftrightarrow...\)
\(y_{max}=\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\Leftrightarrow sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)=1\Leftrightarrow...\)
Giải phương trình:
a, \(2sin^2x+2sinxcosx-3cos^2x=0\).
b, \(2sin^2x-3sinxcosx+cos^2x=0\).
c, \(2sin^2x-5sinxcosx+3cos^2x=0\).
b) \(2sin^2x-3sinxcosx+cos^2x=0\)
\(\Leftrightarrow2tan^2x-3tanx+1=0\left(cosx\ne0\Leftrightarrow x\ne\dfrac{\pi}{2}+k\pi\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=1\\tanx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}tanx=tan\dfrac{\pi}{4}\\tanx=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=arctan\left(\dfrac{1}{2}\right)+k\pi\end{matrix}\right.\left(k\in Z\right)\)
cho pt \(2sin^2x+\left(5m-2\right)sin2x-3\left(m+1\right).cos^2x=3m\). Tìm m để pt có đúng 3 nghiệm thuoc \(\left(-\frac{\pi}{2};\pi\right)\)
Số nghiệm của phương trình : \(cos^2x-3sinxcosx+2sin^2x=0\) trên \(\left(-2\Pi;2\Pi\right)\) ?
A . 2
B . 4
C . 6
D . 8
Trình bày bài giải chi tiết rồi ms chọn đáp án nha các bạn .
Cho tan a=2.Tính \(B=\frac{cos^2x+sin2x+1}{2sin^2x+cos^2x+2}\)
Giải chi tiết giùm mình nhé
Tìm điều kiện để pt sau có nghiệm
a) \(3\sin x+m-1=0\)
b) \(4\cos^2x=m+3\)
c) \(2m\sin x+1=3m\)
a) 3sinx= 1-m => \(-3\le1-m\le3\) \(\Leftrightarrow-2\le m\le4\)
b, \(4cos^2x=m+3\)
\(\Leftrightarrow4cos^2x-2=m+1\)
\(\Leftrightarrow2cos2x=m+1\)
\(\Leftrightarrow cos2x=\dfrac{m+1}{2}\)
Phương trình có nghiệm khi:
\(-1\le\dfrac{m+1}{2}\le1\)
\(\Leftrightarrow-2\le m+1\le2\)
\(\Leftrightarrow-3\le m\le1\)
a, \(3sinx+m-1=0\)
\(\Leftrightarrow sinx=\dfrac{1-m}{3}\)
Phương trình có nghiệm khi:
\(-1\le\dfrac{1-m}{3}\le1\)
\(\Leftrightarrow-3\le1-m\le3\)
\(\Leftrightarrow-2\le m\le4\)
1. Tìm Min, Max của :
B = cos 2x + \(\sqrt{1+2sin^2x}\)
Lời giải:
Ta có:
\(B=\cos 2x+\sqrt{1+2\sin ^2x}=\cos ^2x-\sin ^2x+\sqrt{1+2\sin ^2x}\)
\(=1-2\sin ^2x+\sqrt{1+2\sin ^2x}\)
Đặt \(\sin ^2x=t(t\in [0;1])\). Khi đó:
\(B=1-2t+\sqrt{1+2t}\)
\(B'=\frac{1}{\sqrt{1+2t}}-2=0\Leftrightarrow t=-\frac{3}{8}\) (loại)
Lập bảng biến thiên suy ra:
\(B_{\max}=B(0)=2\)
\(B_{\min}=B(1)=\sqrt{3}-1\)
cho tanx=1 tính A = \(\dfrac{3sin^2x-cos^2x}{2sin^2x}\)
tan x=1
=>sin x=cosx
\(A=\dfrac{3sin^2x-sin^2x}{2sin^2x}=\dfrac{3-1}{2}=1\)
rút gọn a= sin^4x+cos^4x+2sin^2x+cos^2x
`A=sin^4x+cos^4x+2sin^2x+cos^2x`
`=(sin^2x+cos^2x)^2-2sin^2xcos^2x+sin^2x+(sin^2x+cos^2x)`
`=1-1/2 sin^2 2x + sin^2 x+1`
`=2-1/2 sin^2 2x + sin^2x`