phân tích đa thức thành nhân tử:
x^4+x^2y-3xy+2y-16
phân tích đa thức sau thành nhân tử:x^4-5x^2y^2+4y^4
\(x^4-5x^2y^2+4y^4\)
\(=\left(x^2\right)^2-2x^22y^2+\left(2y^2\right)^2-x^2y^2\)
\(=\left(x^2-2y^2\right)^2-\left(xy\right)^2\)
\(=\left(x^2-2y^2-xy\right)\left(x^2-2y^2+xy\right)\)
phân tích đa thức thành nhân tử:x^6+x^4+x^2y^2+y^4-y^6
giúp mk với mk tick cho
\(x^6+x^4+x^2y^2+y^4-y^6\)
\(=\left(x^2\right)^3-\left(y^2\right)^3+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^2-y^2\right)\left(x^4+x^2y^2+y^4\right)+\left(x^4+x^2y^2+y^4\right)\)
\(=\left(x^4+x^2y^2+y^4\right)\left(x^2-y^2-1\right)\)
\(=\left(x^2-xy+y^2\right)\left(x^2+xy+y^2\right)\left(x^2-y^2-1\right)\)
Đa thức x^3 - 2x^2 + x - xy^2 được phân tích thành nhân tử
Đa thức x^3 + 3x^2y +3xy^2 + y^3 được phân tích thành nhân tử là
Đa thức 4x(2y-z)+7y(2y-z) được phân tích thành nhân tử là:
Đa thức x^2+4x+4 được phân tích thành nhân tử là
Tìm x biết x(x-2)-x+2
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
phân tích đa thức thành nhân tử
1/ \(6x^2y-9xy^2+3xy\)
2/ \(\left(4-x\right)^2-16\)
3/ \(x^3+9x^2-4x-36\)
1: \(6x^2y-9xy^2+3xy\)
\(=3xy\left(2x-3y+1\right)\)
2: \(\left(4-x\right)^2-16\)
\(=\left(4-x-4\right)\left(4-x+4\right)\)
\(=-x\cdot\left(8-x\right)\)
3: \(x^3+9x^2-4x-36\)
\(=x^2\left(x+9\right)-4\left(x+9\right)\)
\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)
1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)
2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)
3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)
x^2+2y^2-3xy+x-2y phân tích đa thức thành nhân tử
a, x2 + 2y2 - 3xy + x - 2y = x2 - 4xy + 4y2 + xy - 2y2 + x - 2y
= ( x - 2y )2 + y( x - 2y ) + ( x - 2y )
= ( x - 2y )( x - 2y + y + 1 )
( x - 2y )( x - y + 1 )
Phân tích các đa thức sau thành nhân tử:
a)(5x – 2y)(5x + 2y) + 4y -1
b) x²(xy + 1) + 2y – x – 3xy
a: \(=25x^2-4y^2+4y-1\)
\(=25x^2-\left(2y-1\right)^2\)
\(=\left(5x-2y+1\right)\left(5x+2y-1\right)\)
\(x^3-3xy^2-2y^3\)
Phân tích đa thức thành nhân tử
Phân tích các đa thức sau thành nhân tử :
a) x²(x – y) + 2x – 2y
b)(5x – 2y)(5x + 2y) + 4y -1
c) x²(xy + 1) + 2y – x – 3xy
a: \(=\left(x-y\right)\left(x^2+2\right)\)
Phân tích đa thức thành nhân tử : x^3 - x + 3x^2y + 3xy^3 + y^3 - y
\(=\left(x+y\right)^3-\left(x+y\right)=\left(x+y\right)\left[\left(x+y\right)^2-1\right]\\ =\left(x+y\right)\left(x+y+1\right)\left(x+y-1\right)\)