Tìm a và b sao cho đa thức \(x^2+ax+b\) chia cho x+1 dư 7, chia cho x-3 dư -5
Tìm a và b sao cho đa thức x^3 + ax + b chia hết cho x+ 1 dư 7 và chia hết cho x - 3 dư -5
1. tìm các hằng số a và b sao cho x^3 + ax + b chia hết cho x+1 thì dư 7 chia cho x-3 dư -5.
2. tìm các hằng số a,b,c sao cho ax^3 + bx^2 + c chia cho x+ 2 , chia cho x^2 - 1 thì dư x+5
1. a,Tìm a,b để x3+ax+b chia cho x+1 dư 7, cho x-3 dư -5
b, Tìm a,b để (x4+4) chia hết cho (x2+ax+b)
2. Xây dựng tổng quát về tìm dư khi chia đa thức A(x) cho nhị thức (x-a)
Áp dựng: tìm dư khi chia A(x)=x2018+x2017+x2016 cho x-1
giúp mình với:
tìm hệ số a sao cho đa thức: 2x2-ax+5 chia cho đa thức 2x-3 có số dư bằng 2
tìm hệ số a và b sao cho đa thức: ax3+bx-24 chia hết cho (x+1)(x+3)
a) 2x-3=0 <=> x=\(\dfrac{3}{2}\) để \(\left(2x^2-ax+5\right):\left(2x-3\right)\) thì \(2x^2-ax+5=2\)
Thay x= \(\dfrac{3}{2}\) vào \(2x^2-ax+5\), ta được:
\(\dfrac{9}{2}-\dfrac{3}{2}a+5=2\)
<=> \(-\dfrac{3}{2}a=2-5-\dfrac{9}{2}\) <=>a=5
lười quá ~~
bài 1
vì đa thức bị chia bậc 2, đa thức chia bậc nhất
=> đa thức thương sẽ có dạng bx+c
theo đề ta có
\(2x^2-ax+5=\left(bx+c\right)\left(2x-3\right)+2\\ < =>2x^2-ax+5=2bx^2-3bx+2cx-3c+2\\ < =>2x^2-ax+5=2bx^2-x\left(2c-3b\right)-3c+2\\ < =>\left\{{}\begin{matrix}2x^2=2bx^2\\ax=x\left(2c-3b\right)\\5=2-3c\end{matrix}\right.\\ < =>\left\{{}\begin{matrix}b=1\\c=-1\\a=2c-3b\end{matrix}\right.\\ =>a=2\left(-1\right)-3.1\\ =>a=-5\)
vậy a = -5
bài 2 ko hiểu sao mình ko làm được, chắc sai ở đâu đợi mình làm lại nhé
Biết rằng một đa thức f(x) chia hết cho (x-a) khi và chỉ khi f(a)=0. Hãy tìm các giá trị của m, n, k sao cho:
a. Đa thức f(x)=x^3+mx^2+nx+2 chia cho x+1 dư 5, chia cho x+2 dư 8.
b. Đa thức f(x)=x^3+mx+n chia cho x+1 thì dư 7, chia cho x-3 thì dư -5.
c. Đa thức f(x)=mx^3+nx^2+k chia hết cho x+2, chia cho x^2-1 thì dư x+5.
a) Ta có f(x) - 5 \(⋮\)x + 1
=> x3 + mx2 + nx + 2 - 5 \(⋮\)x + 1
=> x3 + mx2 + nx - 3 \(⋮\)x + 1
=> x = - 1 là nghiệm đa thức
Khi đó (-1)3 + m(-1)2 + n(-1) - 3 = 0
<=> m - n = 4 (1)
Tương tự ta được f(x) - 8 \(⋮\)x + 2
=> x3 + mx2 + nx - 6 \(⋮\) x + 2
=> x = -2 là nghiệm đa thức
=> (-2)3 + m(-2)2 + n(-2) - 6 = 0
<=> 2m - n = 7 (2)
Từ (1)(2) => HPT \(\left\{{}\begin{matrix}m-n=4\\2m-n=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=3\\n=-1\end{matrix}\right.\)
Vậy đa thức đó là f(x) = x3 + 3x2 - x + 2
b) f(x) - 7 \(⋮\)x + 1
=> x3 + mx + n - 7 \(⋮\) x + 1
=> x = -1 là nghiệm đa thức
=> (-1)3 + m(-1) + n - 7 = 0
<=> -m + n = 8 (1)
Tương tự ta được : x3 + mx + n + 5 \(⋮\)x - 3
=> x = 3 là nghiệm đa thức
=> 33 + 3m + n + 5 = 0
<=> 3m + n = -32 (2)
Từ (1)(2) => HPT : \(\left\{{}\begin{matrix}3m+n=-32\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m=-40\\-m+n=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-10\\n=-2\end{matrix}\right.\)
Vậy f(x) = x3 - 10x -2
tìm các số nguyên a và b để đa thức A(x)=x^3+ax^2+bx+2 chia chi đa thức B(x)=x+1 còn dư 5 và chia cho C(x)=x+2 dư 8
Tìm a và b sao cho đa thức: \(x^3+ax+b\) chia cho x+1 dư 7, chia cho x-3 dư -5
Biết đa thức a3+ax+b chia cho đa thức x+1 dư 7, chia cho đa thức x-3 dư 5. Khi đó giá trị của a và b là bao nhiêu.
Áp dụng định lý Bézout , dư của đa thức f(x) cho nhị thức bậc nhất x - a là f(a), ta có :
\(a^3+a.\left(-1\right)+b=7\) ( 1 )
\(a^3+3a+b=5\) ( 2)
Trừ (1) cho (2) ta có :
\(-4a=7-5=2\Rightarrow a=-0,5\)
Bạn từ đó tính b là được.
Tìm a,b để đa thức x^3+ax +b chia cho đa thức x+1 dư 7, chia cho đa thức x-3 dư -5
Mong các bạn chỉ giáo. Cảm ơn các bạn rất nhiều.