Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Ngọc Đoan 	Trang
Xem chi tiết
Nguyễn Tường Huy Nhật
7 tháng 1 2024 lúc 14:27

bạn viết rõ lũy thừa giúp mình với

 

Citii?
7 tháng 1 2024 lúc 14:38

\(A=B\)

Nguyễn Thùy Linh
7 tháng 1 2024 lúc 14:42

ý bạn là  như này đk?

A=1921+1:1922+1

B=1922+1:1923+1

phương linh
Xem chi tiết
Tuyet
14 tháng 7 2023 lúc 8:04

\(S=1+2+2^2+2^3+...+2^9\) 

Đặt \(2S=2+2^2+2^3+2^4+...+2^{10}\) 

\(2S-S=2^{10}-1\) hay \(S=2^{10}-1< 2^{10}\)

\(\Rightarrow\) \(2^{10}=2^2.2^8< 5.2^8\) 

Vậy \(S< 5.2^8\)

\(#Tuyết\)

Nguyễn Lê Phước Thịnh
14 tháng 7 2023 lúc 8:04

2S=2+2^2+...+2^10

=>S=2^10-1=1023

5*2^8=256*5=1280

=>S<5*2^8

Ng Ngọc
14 tháng 7 2023 lúc 8:07

`@` `\text {Answer}`

`\downarrow`

`S = 1 + 2 + 2^2 + 2^3 + ... + 2^9`

`=> 2S = 2 + 2^2 + 2^3 + ... + 2^10`

`=> 2S - S = (2+2^2 + 2^3 + ... + 2^10) - (1 + 2 + 2^2 + 2^3+...+2^9)`

`=> S = 2^10 - 1`

Mà `2^10 - 1 < 2^10`

`=> S < 2^10 (1)`

Ta có:

 `2^10 = 2^7*8`

Mà `5*2^8 = 5* 2 * 2^7 = 10* 2^7`

Vì `10 > 8 => 2^7 * 8 < 2^7  * 10 (2)`

Từ `(1)` và `(2)`

`=> S < 5 * 2^7``.`

phạm hoàng minh
Xem chi tiết
Pika Pika
7 tháng 5 2021 lúc 23:19

2A=2*(1+2+22+...+22020)=2+22+...+22021

2A-A=(1+2+22+...+22021)-(1+2+22+...+22020)

A=22021-1<2021

Giải:

A=1+2+22+23+...+22020

2A=2+22+23+24+...+22021

2A-A=(2+22+23+24+...+22021)-(1+2+22+23+...+22020)

A=22021-1

⇒A<22021

Chúc bạn học tốt!

DƯơng thị Mỹ anh
Xem chi tiết
Toru
2 tháng 1 2024 lúc 17:22

\(A=2+2^2+2^3+\dots+2^{60}\\2A=2^2+2^3+2^4+\dots+2^{61}\\2A-A=(2^2+2^3+2^3+\dots+2^{61})-(2+2^2+2^3+\dots+2^{60})\\A=2^{61}-2\)

Ta thấy: \(2^{61}-2< 2^{61}\)

\(\Rightarrow A< B\)

Tô Trung Hiếu
2 tháng 1 2024 lúc 17:34

A=2+22+23+...+260

\(\Rightarrow\)2A=22+23+24+...+261

\(\Rightarrow\)2A-A=(22+23+24+...+261)-(2+22+2324+...+260)

\(\Rightarrow\)A=261-2

Mà 261-2<261 nên A<B

Vậy A<B

Citii?
2 tháng 1 2024 lúc 17:43

\(a< b\)

vì a hùng
Xem chi tiết
vì a hùng
14 tháng 10 2023 lúc 21:08

giúp e với ạ

gấp rút 

ai gửi đầu tiên e tim cho

Lê Hoàng Yến
14 tháng 10 2023 lúc 21:20

mik bt lm câu 1 thôi nha, bn thông cảm:

a = 2007.2009                              b = 20082

  =(2008 - 1)(2008 + 1)

  = 20082 - 1

Ta có, a = 20082 - 1, b = 20082

mà 20082 - 1 < 20082

=> a < b

Lê Hoàng Yến
14 tháng 10 2023 lúc 21:26

 

 

 

câu 2 nè nha bn

Hoshimiya Ichigo
Xem chi tiết
Lê Khánh Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 6 2021 lúc 21:37

Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)

\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)

\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)

Trần Hà Phong
3 tháng 5 2022 lúc 20:07

2/3+3/4+...=2+1/2

tuấn minh nguyễn đình
Xem chi tiết
Nguyễn Thị Khánh Linh
8 tháng 11 2023 lúc 19:43

Coi A

B=5.22023
�=1+2+22+...+22022

�=1+2+22+...+22022

⇒2�=2+22+...+22023

⇒2�−�=22023−1

⇒�=22023−1

⇒�<22023=22.22021=4.22021<52021

Thai Vu
Xem chi tiết

Giải:

a) \(A=1+2+2^2+2^3+...+2^{2021}\) 

\(2A=2+2^2+2^3+2^4+...+2^{2022}\) 

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2022}\right)-\left(1+2+2^2+2^3+...+2^{2021}\right)\) 

\(A=2^{2022}-1\) 

Vì \(2^{2022}>2^{2021}\) nên \(A>2^{2021}\) 

b) Từ câu (a), ta có:

\(A=2^{2022}-1\) 

\(A=2^{2020}.2^2-1\) 

\(A=\left(2^4\right)^{505}.4-1\) 

\(A=16^{505}.4-1\) 

\(A=\left(\overline{...6}\right)^{505}.4-1\) 

\(A=\overline{...6}.4-1\) 

\(A=\overline{...4}-1\) 

\(A=\overline{...3}\) 

Vậy chữ số tận cùng của A là 3

c) Ta có:

\(A=1+2+2^2+2^3+...+2^{2021}\) 

\(A=1.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{2020}.\left(1+2\right)\) 

\(A=1.3+2^2.3+...+2^{2020}.3\) 

\(A=3.\left(1+2^2+...+2^{2020}\right)⋮3\) 

Vậy \(A⋮3\left(đpcm\right)\)  

d) Ta có:

\(A=1+2+2^2+2^3+...+2^{2021}\) 

\(A=1.\left(1+2+2^2\right)+2^3.\left(1+2+2^2\right)+...+2^{2019}.\left(1+2+2^2\right)\) 

\(A=1.7+2^3.7+...+2^{2019}.7\) 

\(A=7.\left(1+2^3+...+2^{2019}\right)⋮7\)  

Vậy \(A⋮7\left(đpcm\right)\) 

Chúc bạn học tốt!