A=\(\frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}\)
Rút gọn A=\(\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}:2.\sqrt{1+\frac{2x}{3-x}}\)
\(\frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}=\sqrt{2}\)
\(\text{ĐKXĐ: }x-3\ge0;x+3\ge0;2x-6+\sqrt{x^2-9}\ne0\)
\(\Leftrightarrow x\ge3;x\ge-3;2x-6\ne\sqrt{x^2-9}\)
\(\Leftrightarrow x\ge3;4x^2-24x+36\ne x^2-9\)
\(\Leftrightarrow x\ge3;3x^2-24x+45\ne0\)
\(\Leftrightarrow x\ge3;3.\left(x^2-8x+15\right)\ne0\)
\(\Leftrightarrow x\ge3;\left(x-3\right)\left(x-5\right)\ne0\)
\(\Leftrightarrow x\ge3;x\ne3;x\ne5\)
\(\frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}=\sqrt{2}\)
\(\Leftrightarrow\frac{\sqrt{x+3}.\sqrt{x+3}+2\sqrt{\left(x+3\right)\left(x-3\right)}}{2\left(x-3\right)+\sqrt{\left(x+3\right)\left(x-3\right)}}=\sqrt{2}\)
\(\Leftrightarrow\frac{\sqrt{x+3}.\sqrt{x+3}+2\sqrt{x+3}.\sqrt{x-3}}{2\sqrt{x-3}.\sqrt{x-3}+\sqrt{x+3}.\sqrt{x-3}}=\sqrt{2}\)
\(\Leftrightarrow\frac{\sqrt{x+3}\left(\sqrt{x+3}+2\sqrt{x-3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}=\sqrt{2}\)
\(\Leftrightarrow\frac{\sqrt{x+3}}{\sqrt{x-3}}=\sqrt{2}\)
\(\Leftrightarrow\frac{x+3}{x-3}=2\)
\(\Leftrightarrow x+3=2.\left(x-3\right)\)
\(\Leftrightarrow x+3=2x-6\)
\(\Leftrightarrow x-2x=-6-3\)
\(\Leftrightarrow-x=-9\)
\(\Leftrightarrow x=9\)
\(\frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}=\sqrt{2}\)
\(\Leftrightarrow\frac{\sqrt{x+3}.\sqrt{x+3}+2\sqrt{\left(x+3\right)\left(x-3\right)}}{2\left(x-3\right)+\sqrt{\left(x+3\right)\left(x-3\right)}}=\sqrt{2}\)
\(\Leftrightarrow\frac{\sqrt{x+3}.\sqrt{x+3}+2\sqrt{x+3}.\sqrt{x-3}}{2\sqrt{x-3}.\sqrt{x-3}+\sqrt{x+3}.\sqrt{x-3}}=\sqrt{2}\)
\(\Leftrightarrow\frac{\sqrt{x+3}\left(\sqrt{x+3}+2\sqrt{x-3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}=\sqrt{2}\)
\(\Leftrightarrow\frac{\sqrt{x+3}}{\sqrt{x-3}}=\sqrt{2}\)
\(\Leftrightarrow\frac{x+3}{x-3}=2\)
\(\Leftrightarrow x+3=2.\left(x-3\right)\)
\(\Leftrightarrow x+3=2x-6\)
\(\Leftrightarrow x-2x=-6-3\)
\(\Leftrightarrow-x=-9\)
\(\Leftrightarrow x=9\)
Rút gọn biểu thức
A = \(\frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}\)
B = \(\frac{x^2+5x+6+x\sqrt{9-x^2}}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}\)
Giúp mk vs , mk đang cần gấp
Rút gọn A = \(\frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}\)
\(A=\frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}\\ ĐKXĐ:x\ne3\\ A=\frac{x+3+2\sqrt{\left(x+3\right)\left(x-3\right)}}{2\left(x-3\right)+\sqrt{\left(x+3\right)\left(x-3\right)}}\\ =\frac{\sqrt{x+3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}{\sqrt{x-3}\left(2\sqrt{x-3}+\sqrt{x+3}\right)}=\frac{\sqrt{x+3}}{\sqrt{x-3}}\)
Giair phương trình
a, \(3\sqrt{\left(x+1\right)\left(x-3\right)}+x^2-2x=7\)
b, \(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)
c, \(\left(x^2-4\right)+4\left(x-2\right).\sqrt{\frac{x+2}{x-2}}=3\)
d, \(\frac{9}{x^2}+\frac{2x}{\sqrt{2x^2+9}}=1\)
e, \(3\sqrt{2+x}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
Giải pt sau :
1, \(\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(x+1\right)\left(4-x\right)}=5\)
2, \(\sqrt{x+4}+\sqrt{x-4}=2x-12+2\sqrt{x^2-16}\)
3, \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\)
4, \(\frac{4}{x+\sqrt{x^2+x}}-\frac{1}{x-\sqrt{x^2+x}}=\frac{3}{x}\)
5, \(\sqrt{x^2+x+4}+\sqrt{x^2+x+1}=\sqrt{2x^2+2x+9}\)
1.
ĐK: \(-1\le x\le4\)
Đặt \(\sqrt{x+1}+\sqrt{4-x}=t\left(t\ge0\right)\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(4-x\right)}=\frac{t^2-5}{2}\)
\(PT\Leftrightarrow t+\frac{t^2-5}{2}=5\Rightarrow t^2+2t-15=0\) \(\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)
\(t=3\Rightarrow\sqrt{-x^2+3x+4}=2\) \(\Leftrightarrow-x^2+3x+4=4\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\) (tm)
2.
ĐK:\(x\ge4\)
Đặt \(\sqrt{x+4}+\sqrt{x-4}=t\left(t\ge0\right)\)
\(\Rightarrow2\sqrt{x^2-16}=t^2-2x\)
\(PT\Leftrightarrow t=2x-12+t^2-2x\)
\(\Leftrightarrow t^2-t-12=0\Rightarrow\left[{}\begin{matrix}t=4\\t=-3\left(l\right)\end{matrix}\right.\) Giải tiếp như trên.
GPT
a) \(\sqrt{x}+\sqrt{x+1}=\frac{1}{\sqrt{x}}\)
b) \(\frac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}=\sqrt{2}\)
a)
ĐK x >= 0 (1)
pt <=> \(\sqrt{x+1}=\frac{1}{\sqrt{x}}-\sqrt{x}\)
ĐK \(\frac{1}{\sqrt{x}}-\sqrt{x}\ge0\) => \(\frac{1-x}{\sqrt{x}}\ge0\) => \(x\le1\) (2)
pt <=> \(x+1=\frac{1}{x}+x-2\Leftrightarrow\frac{1}{x}=3\Rightarrow x=\frac{1}{3}\) ( TM (1) và (2) )
Vậy x = 1/3 là n* của pt
b) ĐKXĐ: t lười lắm, c tự tìm nhe :D
đặt a=x+3
b=x-3
khi đó ptr trở thành:
\(\frac{a+2\sqrt{ab}}{2b+\sqrt{ab}}\)=\(\sqrt{2}\)
<=>\(\frac{\sqrt{a}.\left(\sqrt{a}+2\sqrt{b}\right)}{\sqrt{b}\left(\sqrt{a}+2\sqrt{b}\right)}\)=\(\sqrt{2}\)
<=>\(\frac{\sqrt{a}}{\sqrt{b}}\)=\(\sqrt{2}\)
<=>a/b=2
<=>a=2b
<=>x+3=2(x-3)
<=>x+3=2x-6
<=>x=9(chắc chắn là thỏa mãn ĐKXĐ nhưng mà sao thay vào ko đc nhỉ.phát hiện lỗi sai sửa giùm t nhe! :D)
Tìm đk và rút gọn:
A=\(\frac{x+3+2\sqrt{x^2-9}}{-2x+6+\sqrt{x^2-9}}\)
a chứng minh rằng: \(\dfrac{x+3+2.\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}=\dfrac{\sqrt{x^2-9}}{x-3}\)
b rút gọn biểu thức T = \(\dfrac{x^2+5x+6+x.\sqrt{9-x^2}}{3x-x^2+\left(x+2\right)\sqrt{9-x^2}}\)