Giá trị lớn nhất của biểu thức P=\(5-\sqrt{x^2-6x+14}\)
Cho biểu thức: B = \(12-\sqrt{x^2-6x+10}\)
Giá trị lớn nhất của biểu thức B là:
Xét \(\sqrt{x^2-6x+10}=\sqrt{\left(x-3\right)^2+1}\ge1\)
=> B \(\le11\)
Dấu "=" <=> x = 3
Tìm giá trị lớn nhất của biểu thức:
\(Q=5-\sqrt{x^2-6x+14}\)
Mọi người giúp mk với!!! mk đang cần gấp!
bài :
a, tìm giá trị nhỏ nhất của biểu thức
A=x\(^2\)=5x=7
b< tìm giá trị lớn nhất của biểu thức
B=6x-x\(^2\)-5
TÌm giá trị nhỏ nhất của biểu thức:\(P=\sqrt{2x^2-2x+5}+\sqrt{2x^2-6x+14}\)
\(p=\sqrt{\left(\sqrt{2}x-\frac{1}{\sqrt{2}}\right)^2+\frac{9}{2}}+\sqrt{\left(\sqrt{2}x-\frac{3}{\sqrt{2}}\right)^2+\frac{19}{2}}\ge\sqrt{\left(\frac{3}{\sqrt{2}}-\sqrt{2}x+\sqrt{2}x-\frac{1}{\sqrt{2}}\right)^2+\left(\frac{3+\sqrt{19}}{\sqrt{2}}\right)^2}=\sqrt{2+\frac{\left(3+\sqrt{19}\right)}{2}^2}\)
bạn Nguyễn Hải Đăng ơi đó là công thức gì vậy? cho mình xin cái công thức tổng quát với mình chưa hiểu lắm
\(A=\dfrac{\left(x+2\right)^2}{x};B=x\left(x+2\right)+\dfrac{x^2+6x+4}{x}\) với x ≠ 0
a. Tính giá trị của biểu thức A biết x > 0 ; \(x^2=3-2\sqrt{2}\)
b. Rút gọn biểu thức \(M=A-B\)
c.Tìm x để biểu thức M đạt giá trị lớn nhất .Tìm giá trị lớn nhất đó ?
a: Ta có: \(x^2=3-2\sqrt{2}\)
nên \(x=\sqrt{2}-1\)
Thay \(x=\sqrt{2}-1\) vào A, ta được:
\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)
Tìm giá trị nhỏ nhất của biểu thức,
A=\(\sqrt{4x^2+4x+2}\)
B=\(\sqrt{2x^2-4x+5+1}\)
Tìm giá trị lớn nhất của biểu thức
M=\(-5+\sqrt{1+9x^2+6x}\)
a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)
Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)
\(\Rightarrow A\ge\sqrt{1}=1\)
Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)
b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)
\(=\sqrt{2\left(x-1\right)^2+4}\)
Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)
\(\Rightarrow B\ge\sqrt{4}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)
Vậy \(minB=2\Leftrightarrow x=1\)
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\sqrt{2x^2-2x+5}+\sqrt{2x^2-6x+14}\)
√(x² + 2x + 5) = √[(x + 1)² + 4] ≥ 2.
√(2x² + 4x + 3) = √[2(x + 1)² + 1] ≥ 1.
=> √(x² + 2x + 5) + √(2x² + 4x + 3) ≥ 3.
___Dấu bằng xảy ra khi và chỉ khi x = - 1.
Vậy biểu thức đã cho có giá trị nhỏ nhất là 3
ai tích mình mình sẽ tích lại
Bằng biến đổi tương đương, ta chứng minh được BĐT : \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
Biểu diễn : \(A=\sqrt{2}\left(\sqrt{x^2-x+\frac{5}{2}}+\sqrt{x^2-3x+7}\right)\)
\(=\sqrt{2}\left(\sqrt{\left(x-\frac{1}{2}\right)^2+\left(\frac{3}{2}\right)^2}+\sqrt{\left(\frac{3}{2}-x\right)^2+\left(\sqrt{\frac{19}{4}}\right)^2}\right)\ge\sqrt{2}.\sqrt{\left(x-\frac{1}{2}+\frac{3}{2}-x\right)^2+\left(\frac{3}{2}+\frac{\sqrt{19}}{2}\right)^2}=\sqrt{16+3\sqrt{19}}\)=> Min A = \(\sqrt{16+3\sqrt{19}}\)
Dấu "=" bạn tự xét nhé!
Tìm giá trị lớn nhất của biểu thức \(A=7-\sqrt{x^2-6x+9}\)
\(\sqrt{x^2-4x+4}=\sqrt{\left(x-2\right)^2}\)
\(\sqrt{\left(x-2\right)^2}\ge0\Leftrightarrow-\sqrt{\left(x-2\right)^2}\le0\Leftrightarrow4-\sqrt{\left(x-2\right)^2}\le4\)
\(\Leftrightarrow A\le4\)
Vậy giá trị lớn nhất của A là 4 tại x = 2
mk hơi nhầm 1 tí nhìn thành \(A=4-\sqrt{x^2-4x+4}\) để mk làm lại cho
\(\sqrt{x^2-6x+9}=\sqrt{\left(x-3\right)^2}\)
\(\sqrt{\left(x-3\right)^2}\ge0\Leftrightarrow-\sqrt{\left(x-3\right)^2}\le0\Leftrightarrow7-\sqrt{\left(x-3\right)^2}\le7\)
\(\Leftrightarrow A\le7\)
Vậy giá trị lớn nhất của A là 7 tại x = 3
cho các số thực x,y,,z≥0 thỏa mãn x+y+z=3.Tìm giá trị nhỏ nhất và giá trị lớn nhất cảu biểu thức \(P=\sqrt{x^2-6x+25}+\sqrt{y^2-6y+25}+\sqrt{z^2-6z+25}\)
\(P=\sqrt{\left(x-3\right)^2+4^2}+\sqrt{\left(y-3\right)^2+4^2}+\sqrt{\left(z-3\right)^2+4^2}\)
\(P\ge\sqrt{\left(x-3+y-3+z-3\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)
\(P_{min}=6\sqrt{5}\) khi \(x=y=z=1\)
Mặt khác với mọi \(x\in\left[0;3\right]\) ta có:
\(\sqrt{x^2-6x+25}\le\dfrac{15-x}{3}\)
Thật vậy, BĐT tương đương: \(9\left(x^2-6x+25\right)\le\left(15-x\right)^2\)
\(\Leftrightarrow8x\left(3-x\right)\ge0\) luôn đúng
Tương tự: ...
\(\Rightarrow P\le\dfrac{45-\left(x+y+z\right)}{3}=14\)
\(P_{max}=14\) khi \(\left(x;y;z\right)=\left(0;0;3\right)\) và hoán vị