Bài 2:Tìm điều kiện của x để căn thức sau có nghĩa:
a.\(\sqrt{5x+2}\)
b.\(\sqrt{\frac{-3}{2x+1}}\)
Tìm điều kiện của x để căn thức sau có nghĩa
a) $\sqrt{2x+10}$ +1/(x^2-4)
b) $\sqrt{\frac{x^2+1}{x-1}}$
a)
\(\sqrt{2x+10}+\frac{1}{x^2+4}\)
Căn thức có nghĩa khi
\(\begin{cases}2x+10\ge0\\x^2-4\ne0\end{cases}\)
\(\Leftrightarrow\begin{cases}x\ge-5\\\begin{cases}x\ne2\\x\ne-2\end{cases}\end{cases}\)
Vật căn thức có nghĩa khi \(x>-6;x\ne\pm2\)
b)
\(\sqrt{\frac{x^2+1}{x-1}}\)
Căn thưc có nghĩa khi
\(\begin{cases}\left(x^2+1\right)\left(x-1\right)\ge0\\x-1\ne0\end{cases}\)
Mà \(x^2+1\ge1\) => x - 1 >0
\(x+1>0\)
\(\Leftrightarrow x>-1\)
Tìm điều kiện để căn thức sau có nghĩa:
a) \(\sqrt{\frac{x-3}{4-x}}\)
b) \(\sqrt{\frac{x^2+2x+4}{2x-3}}\)
a,\(\sqrt{\frac{x-3}{4-x}}\)
Biểu thức trên xác định
\(\Leftrightarrow\frac{x-3}{4-x}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\4>x\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\4< x\end{cases}}\)(loại)
Vậy biểu thức trên xác định khi \(3\le x< 4\)
b, \(\sqrt{\frac{x^2+2x+4}{2x-3}}\)
Biểu thức trên xác định \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)
Ta có \(x^2+2x+4=\left(x+1\right)^2+3\ge3\forall x\)nên \(x^2+2x+4>0\forall x\)
=> Biểu thức trên xác định \(\Leftrightarrow2x-3>0\)
\(\Leftrightarrow2x>3\)
\(\Leftrightarrow x>\frac{3}{2}\)
Vậy biểu thức trên xác định khi \(x>\frac{3}{2}\)
a)\(\sqrt{\frac{x-3}{4-x}}\)có nghĩa \(\Leftrightarrow\frac{x-3}{4-x}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-3\ge0\\4-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-3\le0\\4-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge3\\x< 4\end{cases}}\)hoặc \(\hept{\begin{cases}x\le3\\x>4\end{cases}}\)(Vô lí)
\(\Leftrightarrow3\le x< 4\)
b)\(\sqrt{\frac{x^2+2x+4}{2x-3}}\)có nghĩa \(\Leftrightarrow\frac{x^2+2x+4}{2x-3}\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x^2+2x+4\ge0\\2x-3>0\end{cases}}\)hoặc \(\hept{\begin{cases}x^2+2x+4\le0\\2x-3< 0\end{cases}}\)
mà \(x^2+2x+4=\left(x+1\right)^2+2\ge2\forall x\)
nên \(\hept{\begin{cases}\left(x+1\right)^2+2\ge2\\2x-3>0\end{cases}}\)
\(\Leftrightarrow x>\frac{3}{2}\)
1) Nêu điều kiện để √a có nghĩa ?
2) Áp dụng: Tìm x để các căn thức sau có nghĩa:
a) \(\sqrt{2x+6}\)
b) \(\sqrt{\frac{-2}{2x-3}}\) MÌNH CẦN RẤT GẤP GIÚP MÌNH NHA
1,Điều kiện để \(\sqrt{a}\) có nghĩa là \(a\ge0\)
2, a, để căn thức \(\sqrt{2x+6}\) có nghĩa \(\Leftrightarrow2x+6\ge0\)
\(\Leftrightarrow2x\ge-6\)
\(\Leftrightarrow x\ge-3\)
b, để căn thức \(\sqrt{\frac{-2}{2x-3}}\) có nghĩa \(\Leftrightarrow2x-3\ge0\)
\(\Leftrightarrow2x\ge3\)
\(\Leftrightarrow x\ge\frac{3}{2}\)
Tìm x để mỗi căn thức sau có nghĩa:
a. \(\sqrt{3-2x}\) b. \(\sqrt{x+1}+\sqrt{3-x}\) c. \(\dfrac{\sqrt{4x-2}}{x^2-4x+3}\) d. \(\dfrac{\sqrt{4x^2-2x+1}}{\sqrt{3-5x}}\)
ĐKXĐ: \(3-2x\ge0\Leftrightarrow x\le\dfrac{3}{2}\)
b) ĐKXĐ: \(-1\le x\le3\)
c) ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ne1\\x\ne3\end{matrix}\right.\).
d) ĐKXĐ: \(x< \dfrac{3}{5}\).
Bài 1:
a.Tìm điều kiện để căn thức bậc 2 có nghĩa \(\sqrt{\dfrac{-5}{2x+1}}\)
b. \(\sqrt[3]{64}+\sqrt[3]{-27}-\sqrt[3]{-4}.\sqrt[3]{2}\)
a)ĐK:\(-\dfrac{5}{2x+1}\ge0\) và \(2x+1\ne0\)
\(\Leftrightarrow2x+1>0\) \(\Leftrightarrow x>-\dfrac{1}{2}\)
Vậy \(x< -\dfrac{1}{2}\) thì căn thức có nghĩa
b)\(\sqrt[3]{64}+\sqrt[3]{-27}-\sqrt[3]{-4}.\sqrt[3]{2}=\sqrt[3]{4^3}+\sqrt[3]{-3^3}-\sqrt[3]{-8}\)
\(=4+\left(-3\right)-\left(-2\right)\)
\(=3\)
Bài 1: Tìm điều kiện để các phân thức sau có nghĩa
a)\(\frac{x-1}{x+1}b)\frac{2x+1}{-3x+5}c)\frac{3x-1}{x^2-4}d)\frac{x-1}{x^2+4}e)\frac{x-1}{\left(x-2\right)\left(x+3\right)}g)\frac{x-1}{x+2}:\frac{x}{x+1}\)
Bài 2 :Tìm điều kiện để các căn thức sau có nghĩa:\(1)\sqrt{3x}|2)\sqrt{-x}|3)\sqrt{3x+2}|4)\sqrt{5-2x}|5)\sqrt{x^2}|6)\sqrt{-4x^2}|7)\sqrt{x-3}+\sqrt{2x+2}|8)\sqrt{\frac{-3}{x+2}}|9)\frac{3}{2x-4}\)
Bài 1
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{2x+1}{x^2+1}}\)
b. \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}\)
* Rút gọn biểu thức
a. \(\sqrt{20}+2\sqrt{45}+\sqrt{125}-3\sqrt{80}\)
b. \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{3}\sqrt{45}+\sqrt{\left(2-\sqrt{5}\right)^2}\)
c. \(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\)
Bài 1 :
a, ĐKXĐ : \(\dfrac{2x+1}{x^2+1}\ge0\)
Mà \(x^2+1\ge1>0\)
\(\Rightarrow2x+1\ge0\)
\(\Rightarrow x\ge-\dfrac{1}{2}\)
Vậy ...
b, Ta có : \(\sqrt[3]{-27}+\sqrt[3]{64}-\sqrt[3]{-\dfrac{128}{2}}\)
\(=-3+4-\left(-4\right)=-3+4+4=5\)
Bài 2 :
\(a,=2\sqrt{5}+6\sqrt{5}+5\sqrt{5}-12\sqrt{5}\)
\(=\sqrt{5}\left(2+6+5-12\right)=\sqrt{2}\)
\(b,=\sqrt{5}+\sqrt{5}+\left|\sqrt{5}-2\right|\)
\(=2\sqrt{5}+\sqrt{5}-2=3\sqrt{5}-2\)
\(c,=\dfrac{\left(5+\sqrt{5}\right)^2+\left(5-\sqrt{5}\right)^2}{\left(5-\sqrt{5}\right)\left(5+\sqrt{5}\right)}\)
\(=\dfrac{25+10\sqrt{5}+5+25-10\sqrt{5}+5}{25-5}\)
\(=3\)
1. Tính x để căn thức sau có nghĩa:
\(\sqrt{\frac{-2x}{x^2-\text{3}x+9}}\)
2. Tìm các giá trị nguyên của x để các biểu thức sau có nghĩa:
a/A=\(\frac{\sqrt{x}+\text{3}}{\sqrt{x}-2}\)
b/B=\(\frac{2\sqrt{x}-1}{\sqrt{x}+\text{3}}\)
3. Cho biểu thức P= (\(\frac{\sqrt{x}}{\sqrt{x}-1}\)-\(\frac{1}{x-x\sqrt{x}}\): (\(\frac{1}{\sqrt{x}+1}\)+\(\frac{2}{x-1}\))
a/ Tìm điều kiện x để P xđ: Rút gọn
b/ Tìm các giá trị của P để P <0
c/ Tính giá trị của P khi x=4-2\(\sqrt{\text{3}}\)
Tìm điều kiện của x để biểu thức xác định:ở biểu thức A có 2 dấu căn nha
A=\(\frac{\sqrt{x-2\sqrt{x-1}}}{x-1}\)
B=\(\sqrt{\frac{1-3x}{2x^3-x^2+2x-1}}\)
Bài 2:Tính:
A=\(\sqrt{227-30\sqrt{2}}+\sqrt{12^3+22\sqrt{2}}\)(Đề bài sai thì sửa lại giúp mình rồi trả lời nha)