Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
kà-cái-cay :>>
Xem chi tiết
Trần Đức Huy
12 tháng 9 2021 lúc 16:22

Gọi số cần tìm là x

x * 45 = k^2

x * 5 * 3^2 = k^2

Do 3^2 là số chính phương => X * 5 cũng là số chính phương

=> x = 5 * y (y là một số chính phương)

x có 2 chữ số nên 10 <= x <= 99

=> 2 <= y <= 19

Xét các số chính phương từ 2 đến 19 có 3 số thỏa mãn là: 4; 9; 16

=> x = 20; 45; 80

Khách vãng lai đã xóa
Hong Hong
Xem chi tiết
Trương Ngọc Mai
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
25 tháng 2 2018 lúc 14:49

3x6x9x12x...x141 = (1 x 3) x (2 x 3) x (3 x 3) x ( 4 x 3) x ....x ( 47 x 3) = (1x 2 x 3 x 4 x 5 x ....x 47)x ( 3 x 3x 3 x 3x....x3) -Từ ở nhóm 1 có : 5 , 15, 35, 45. Mỗi số này khi ghép với một số chẵn sẽ tạo ra 1 chữ số 0 ở tận cùng -các số 10, 20, 30, 40 mỗi thừa số này cũng tạo ra 1 chữ số 0 ở tận cùng -Số 25 = 5 x 5 sẽ tạo ra 2 chữ số 0 ở tận cùng => có 10 chữ số ở tận cùng giống nhau và là 10 chữ số 0 b, muốn tìm 2 chữ số tận cùng của tích đó thì thực chất ta đi tìm 2 chữ số tận cùng của tích 4 x 4 x 4 x....x 4 ( gồm 202 chữ số 4 ) Ta thấy số có 2 chữ số tận cùng là 76 nhân với nhau thì vẫn được 2 chữ số tận cùng là 76 ( ở dạng bài tìm 2 chữ số tận cùng thì ta cần nhớ 1 số quy luật đặc biệt như vậy ) Lại thấy 24 x 24 = 576; 4x4x4x4x4 = 1024 nên cứ ghép 10 chữ số 4 với nhau ta sẽ được 1 kết quả có 2 chữ số tận cùng là 76 Có 202 chữ số nên ghép được 20 nhóm dư 2 chữ số. Vậy 2 chữ số tận cùng cần tìm là 2 chữ số tận cùng của tích: 76 x 4 x 4 = 1216 Đáp số: 16

Hoàng Đức Huynh
Xem chi tiết
tth_new
Xem chi tiết
Nguyễn Hưng Phát
18 tháng 6 2019 lúc 9:20

a,Ý 1:\(14^{14^{14}}=7^{14^{14}}.2^{14^{14}}\)

Dễ chứng minh \(14^{14}⋮4\) và \(14^{14}\) chia 20 dư 16 nên đặt \(14^{14}=4k=20l+16\)

Ta có:\(14^{14^{14}}=7^{4k}.2^{20l+16}=\left(7^4\right)^k.\left(2^{20}\right)^l.2^{16}\)\(=2401^k.1048576^l.65536\)

\(\equiv\left(01\right)^k.\left(76\right)^l.36=01.76.36=2736\equiv36\)(mod 100)

Ý 2:Để ý:\(5^7\equiv5\)(mod 180).Từ đó chứng minh được :\(5^{121}=5^{98}.5^{23}\equiv25.5^5=1625\equiv5\)(mod 180)
Đặt:\(5^{121}=180m+5\).Khi đó:\(17^{5^{121}}=17^{180m+5}=\left(17^{180}\right)^m.17^5\equiv\left(01\right)^m.57=01.57=57\)(mod 100)
Có được :\(17^{180}\equiv01\)(mod 100) là do:\(17^3\equiv13\)(mod 100)  mà \(13^6\equiv9\) nên \(17^{18}\equiv13^6\equiv9\)(mod 100)
Lại có:\(9^{10}\equiv01\)(mod 100) \(\Rightarrow17^{180}\equiv9^{10}\equiv01\)(mod 100)

Nguyễn Hưng Phát
18 tháng 6 2019 lúc 10:07

b,Ta có:\(2^{20}=16^5\equiv76\)(mod 100) nên \(2^{2000}=\left(2^{20}\right)^{100}\equiv76^{100}\equiv76\)(mod 100)
\(\Rightarrow2^{2006}=2^{2000}.2^6\equiv76.64=4864\equiv64\)(mod 100)
Đặt \(2^{2006}=100t+64\) ta được \(3^{2^{2006}}=3^{100t+64}=\left(3^{100}\right)^t.3^{64}\equiv\left(001\right)^t.3^{64}=3^{64}\)(mod 1000)
Lại có:\(3^{10}\equiv49\)(mod 1000)\(\Rightarrow3^{60}=\left(3^{10}\right)^6\equiv49^6\equiv201\)(mod 1000)
\(\Rightarrow3^{64}=3^{60}.81\equiv81.201=16281\equiv281\)( mod 1000)

Nguyệt
17 tháng 6 2019 lúc 15:56

\(14^{14^{14}}⋮4\)(3)

\(14^{14}\equiv1\left(mod5\right)\)

Đặt 1414=5k+1( vì 14^14 chẵn nên k lẻ)

Khi đó \(14^{14^{14}}=14^{5k+1}\)

\(14^5\equiv-1\left(mod25\right)\Leftrightarrow\left(14^5\right)^k.14\equiv-14\left(mod25\right)\text{vì }k\text{ lẻ}\)

\(\Leftrightarrow14^{14^{14}}\text{chia 25 dư 11}\)=> hai CSTC của 14^14^14 chia 25 dư 11(1)

Mà \(14^{14^{14}}\text{có CSTC là 6 }\)(2)

ta thấy để tm 3 trường hợp trên chỉ có 36

Vậy..

p/s: cách này ko hay lắm :((((( 

Một người bình thường vô...
Xem chi tiết
Y-S Love SSBĐ
Xem chi tiết
nguyenphamanhthu
2 tháng 9 2018 lúc 8:51

bạn ra đề khó quá

OoO Lê Thị Thu Hiền OoO
Xem chi tiết
Công Toàn
23 tháng 10 2017 lúc 23:40

cái này minh chỉ giải dc câu 1 thôi nhé. 
bấm máy tính CASIO FX-570 ES/VN PLUS.
quy trình ấn phím:
SHIFT -> LOG(dưới nút ON) -> 2 -> X^*(bên cạnh dấu căn) -> ALPHA -> X -> bấm phím xuống -> 1 ->  bấm phím lên -> 20.
bấm dấu bằng.
ta có kết quả là 2097150.
vậy số tận cùng là 0.