Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hải Vân
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 3 2021 lúc 22:23

a.

\(y'=\dfrac{3}{cos^2\left(3x-\dfrac{\pi}{4}\right)}-\dfrac{2}{sin^2\left(2x-\dfrac{\pi}{3}\right)}-sin\left(x+\dfrac{\pi}{6}\right)\)

b.

\(y'=\dfrac{\dfrac{\left(2x+1\right)cosx}{2\sqrt{sinx+2}}-2\sqrt{sinx+2}}{\left(2x+1\right)^2}=\dfrac{\left(2x+1\right)cosx-4\left(sinx+2\right)}{\left(2x+1\right)^2}\)

c.

\(y'=-3sin\left(3x+\dfrac{\pi}{3}\right)-2cos\left(2x+\dfrac{\pi}{6}\right)-\dfrac{1}{sin^2\left(x+\dfrac{\pi}{4}\right)}\)

Sonyeondan Bangtan
Xem chi tiết
Thư Trần
Xem chi tiết
Dương Nguyễn
Xem chi tiết
Akai Haruma
28 tháng 6 2021 lúc 18:16

a1.

$\cot (2x+\frac{\pi}{3})=-\sqrt{3}=\cot \frac{-\pi}{6}$

$\Rightarrow 2x+\frac{\pi}{3}=\frac{-\pi}{6}+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{-\pi}{4}+\frac{k}{2}\pi$ với $k$ nguyên

a2. ĐKXĐ:...............

$\cot (3x-10^0)=\frac{1}{\cot 2x}=\tan 2x$

$\Leftrightarrow \cot (3x-\frac{\pi}{18})=\cot (\frac{\pi}{2}-2x)$

$\Rightarrow 3x-\frac{\pi}{18}=\frac{\pi}{2}-2x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=\frac{\pi}{9}+\frac{k}{5}\pi$ với $k$ nguyên.

 

 

Akai Haruma
28 tháng 6 2021 lúc 18:23

a3. ĐKXĐ:........

$\cot (\frac{\pi}{4}-2x)-\tan x=0$

$\Leftrightarrow \cot (\frac{\pi}{4}-2x)=\tan x=\cot (\frac{\pi}{2}-x)$

$\Rightarrow \frac{\pi}{4}-2x=\frac{\pi}{2}-x+k\pi$ với $k$ nguyên

$\Leftrightarrow x=-\frac{\pi}{4}+k\pi$ với $k$ nguyên.

a4. ĐKXĐ:.....

$\cot (\frac{\pi}{6}+3x)+\tan (x-\frac{\pi}{18})=0$

$\Leftrightarrow \cot (\frac{\pi}{6}+3x)=-\tan (x-\frac{\pi}{18})=\tan (\frac{\pi}{18}-x)$

$=\cot (x+\frac{4\pi}{9})$

$\Rightarrow \frac{\pi}{6}+3x=x+\frac{4\pi}{9}+k\pi$ với $k$ nguyên

$\Rightarrow x=\frac{5}{36}\pi + \frac{k}{2}\pi$ với $k$ nguyên. 

Duong Ho
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 12 2022 lúc 15:00

a: \(\Leftrightarrow cos2x=\dfrac{1}{\sqrt{2}}\)

=>2x=pi/4+k2pi hoặc 2x=-pi/4+k2pi

=>x=pi/8+kpi hoặc x=-pi/8+kpi

b: \(\Leftrightarrow sinx=sin\left(\dfrac{pi}{2}-3x\right)\)

=>x=pi/2-3x+k2pi hoặ x=pi/2+3x+k2pi

=>4x=pi/2+k2pi hoặc -2x=pi/2+k2pi

=>x=pi/8+kpi/2 hoặc x=-pi/4-kpi

d: \(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=-sin\left(3x+\dfrac{pi}{4}\right)\)

\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=sin\left(-3x-\dfrac{pi}{4}\right)\)

\(\Leftrightarrow cos\left(x+\dfrac{pi}{3}\right)=cos\left(3x+\dfrac{3}{4}pi\right)\)

=>3x+3/4pi=x+pi/3+k2pi hoặc 3x+3/4pi=-x-pi/3+k2pi

=>2x=-5/12pi+k2pi hoặc 4x=-13/12pi+k2pi

=>x=-5/24pi+kpi hoặc x=-13/48pi+kpi/2

e: \(\Leftrightarrow sinx-\sqrt{3}\cdot cosx=0\)

\(\Leftrightarrow sin\left(x-\dfrac{pi}{3}\right)=0\)

=>x-pi/3=kpi

=>x=kpi+pi/3

Phong Vũ
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 2 2021 lúc 8:01

Câu 1 đề sai, chắc chắn 1 trong 2 cái \(cot^2x\) phải có 1 cái là \(cos^2x\)

2.

\(\dfrac{1-sinx}{cosx}-\dfrac{cosx}{1+sinx}=\dfrac{\left(1-sinx\right)\left(1+sinx\right)-cos^2x}{cosx\left(1+sinx\right)}=\dfrac{1-sin^2x-cos^2x}{cosx\left(1+sinx\right)}\)

\(=\dfrac{1-\left(sin^2x+cos^2x\right)}{cosx\left(1+sinx\right)}=\dfrac{1-1}{cosx\left(1+sinx\right)}=0\)

3.

\(\dfrac{tanx}{sinx}-\dfrac{sinx}{cotx}=\dfrac{tanx.cotx-sin^2x}{sinx.cotx}=\dfrac{1-sin^2x}{sinx.\dfrac{cosx}{sinx}}=\dfrac{cos^2x}{cosx}=cosx\)

4.

\(\dfrac{tanx}{1-tan^2x}.\dfrac{cot^2x-1}{cotx}=\dfrac{tanx}{1-tan^2x}.\dfrac{\dfrac{1}{tan^2x}-1}{\dfrac{1}{tanx}}=\dfrac{tanx}{1-tan^2x}.\dfrac{1-tan^2x}{tanx}=1\)

5.

\(\dfrac{1+sin^2x}{1-sin^2x}=\dfrac{1+sin^2x}{cos^2x}=\dfrac{1}{cos^2x}+tan^2x=\dfrac{sin^2x+cos^2x}{cos^2x}+tan^2x\)

\(=tan^2x+1+tan^2x=1+2tan^2x\)

Khiết Quỳnh
Xem chi tiết
Nguyễn Việt Lâm
1 tháng 10 2020 lúc 23:12

a. ĐKXĐ: ...

Ta có: \(\left\{{}\begin{matrix}VT=\left(tanx-cotx\right)^2+2\ge2\\VP=1+cos^2\left(3x+\frac{\pi}{4}\right)\le2\end{matrix}\right.\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}tanx-cotx=0\\cos^2\left(3x+\frac{\pi}{4}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}cos2x=0\\sin\left(3x+\frac{\pi}{4}\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+\frac{k\pi}{3}\end{matrix}\right.\)

\(\Rightarrow x=\frac{\pi}{4}+k\pi\)

Nguyễn Việt Lâm
1 tháng 10 2020 lúc 23:15

b.

\(\Leftrightarrow\frac{2\pi}{3}\left(sinx-1\right)=k2\pi\)

\(\Leftrightarrow sinx-1=3k\)

\(\Leftrightarrow sinx=3k+1\)

Do \(-1\le sinx\le1\)

\(\Rightarrow-1\le3k+1\le1\Rightarrow-\frac{2}{3}\le k\le0\)

\(\Rightarrow k=0\)

\(\Rightarrow sinx=1\)

\(\Rightarrow x=\frac{\pi}{2}+k2\pi\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
1 tháng 10 2020 lúc 23:17

c.

ĐKXĐ: ...

\(\Leftrightarrow\frac{\pi}{4}\left(cosx-1\right)=-\frac{\pi}{4}+k\pi\)

\(\Leftrightarrow cosx-1=4k-1\)

\(\Leftrightarrow cosx=4k\)

\(-1\le cosx\le1\Rightarrow-1\le4k\le1\)

\(\Rightarrow-\frac{1}{4}\le k\le\frac{1}{4}\Rightarrow k=0\)

\(\Rightarrow cosx=0\)

\(\Rightarrow x=\frac{\pi}{2}+k\pi\)

Khách vãng lai đã xóa
Puca Trần
Xem chi tiết
Hoàng Tử Hà
31 tháng 8 2019 lúc 23:46

a/ \(\tan^2x-\cot^2\left(x-\frac{\pi}{4}\right)=0\)

\(\Leftrightarrow\frac{1}{\cos^2x}-1-\frac{1}{\sin^2\left(x-\frac{\pi}{4}\right)}+1=0\)

\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\left(\sin x.\cos\frac{\pi}{4}-\cos x.\sin\frac{\pi}{4}\right)^2}=0\)

\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\left(\frac{\sqrt{2}}{2}\sin x-\frac{\sqrt{2}}{2}\cos x\right)^2}=0\)

\(\Leftrightarrow\frac{1}{\cos^2x}-\frac{1}{\frac{1}{2}\sin^2x-\sin x.\cos x+\frac{1}{2}\cos^2x}=0\)

\(\Leftrightarrow\frac{1}{2}\sin^2x-\sin x.\cos x+\frac{1}{2}\cos^2x-\cos^2x=0\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}\cos^2x-\sin x.\cos x-\frac{1}{2}\cos^2x=0\)

\(\Leftrightarrow\cos^2x+\sin x.\cos x-\frac{1}{2}=0\)

Đến đây là dễ r nha bn :3

Nguyễn Linh
Xem chi tiết
Trần Quốc Lộc
16 tháng 7 2020 lúc 16:39

\(\text{1) Đ}K:\left\{{}\begin{matrix}sinx\ne0\\1-sinx\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne m\pi\\x\ne\frac{\pi}{2}+n2\pi\end{matrix}\right.\)

\(2\text{) }ĐK:\left\{{}\begin{matrix}cos\left(2x+\frac{\pi}{3}\right)\ne0\\sinx\ne0\end{matrix}\right.\Leftrightarrow\\ \left\{{}\begin{matrix}2x+\frac{\pi}{3}\ne\frac{\pi}{2}+m\pi\\x\ne n\pi\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne\frac{\pi}{12}+\frac{m\pi}{2}\\x\ne n\pi\end{matrix}\right.\)

\(3\text{) }ĐK:\left\{{}\begin{matrix}\frac{5-3cos2x}{1+sin\left(2x-\frac{\pi}{2}\right)}\ge0\\1+sin\left(2x-\frac{\pi}{2}\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5-3cos2x\ge0\\sin\left(2x-\frac{\pi}{2}\right)\ne-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}cos2x\le\frac{5}{3}\left(T/m\right)\\2x-\frac{\pi}{2}\ne\frac{3\pi}{2}+k2\pi\end{matrix}\right.\Leftrightarrow x\ne\pi+k\pi\)

\(4\text{) }ĐK:\left\{{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)\ne0\\cos\left(3x-\frac{\pi}{4}\right)\ne0\\tan\left(3x-\frac{\pi}{4}\right)\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+\frac{\pi}{3}\ne a\pi\\3x-\frac{\pi}{4}\ne\frac{\pi}{2}+b\pi\\3x-\frac{\pi}{4}\ne c\pi\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne-\frac{\pi}{3}+a\pi\\x\ne\frac{\pi}{4}+\frac{b\pi}{3}\\x\ne\frac{\pi}{12}+\frac{c\pi}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne-\frac{\pi}{3}+a\pi\\x\ne\frac{\pi}{12}+\frac{k\pi}{6}\end{matrix}\right.\)