Tìm x, y thuộc z thỏa mãn:
3(x^2+xy+y^2) = x+8y
1.Tìm x;y thuộc N : x^3 -7=y^2
2.Tìm p;q thuộc P và x thuộc z thỏa mãn: x^5+px+3q=0
3, Tìm x;y thuộc Z thỏa mãn 6x^3-xy(11x+3y)+2y^3=6
1.cho x,y,z thuộc R thỏa mãn x+y+z+xy+xz+yz=6. Tìm GTNN của : x^2+y^2+z^2
2. cho x,y>0 thỏa mãn x+1/y<=1. tìm GTNN: A=x/y+y/x
Tìm tất cả các số nguyên x và y thỏa mãn phương trình 3(x^2+xy+y^2)=x+8y
Tìm x,y Thuộc Z thỏa mãn x\(^2\)-xy+x-3y = 1
Tìm x,y thuộc Z thỏa mãn
a) 5x+30=-3xy+9y^2
b) 5x+25=-3y+8y^2
c) x^3-x^2.y +3x-2y-5=0
d) x^2+2y^2+2xy+y-2=0
Tìm x,y thuộc N* thỏa mãn: \(X^2 + Y^2 = Z^2\) ; \(Z(Y+X+Z) = XY\)
Mik đang cần gấp. Các bạn giúp mik với ạ.Cảm ơn nh!!!
Bài1: Tìm các số nguyên x,y thỏa mãn: x^4+2x^2=y^3
Bài2: Tìm các số tự nhiên x,y thỏa mãn: 2x.x^2=9y^2+6y+16
Bài3: Cho x,y,z>0 thỏa mãn x^2+y^2+z^2=3. Tìm Max P= x/(3-yz) + y/(3-xz) +z/(3-xy)
1)cho 2 số x,y thỏa mãn xy+x+y=7 và x^2y +xy^2= 10
tính giá trị biểu thức A= x^3 +y^3
2)tìm bộ 3 x,y,z thỏa mãn:
x-y-z+3=0 và x^2-y^2-z^2 =1
các bạn làm giúp m nha!!!
Tìm x,y,z thỏa mãn: a)\(9x^2-8xy+8y^2-28x+28=0\) b)\(x^2+2y^2+5z^2+1=2\left(xy+2yz+z\right)\)
a)
pt <=> \(\left(2x^2-8xy+8y^2\right)+\left(7x^2-28x+28\right)=0\)
<=> \(2\left(x-2y\right)^2+7\left(x-2\right)^2=0\)
TA luôn có: \(2\left(x-2y^2\right)+7\left(x-2\right)^2\ge0\forall x;y\)
=> DẤU "=" XẢY RA <=> \(\hept{\begin{cases}2\left(x-2y\right)^2=0\\7\left(x-2\right)^2=0\end{cases}}\)
<=> \(\hept{\begin{cases}y=1\\x=2\end{cases}}\)
b)
pt <=> \(x^2+2y^2+5z^2-2xy-4yz-2z+1=0\)
<=> \(\left(x^2-2xy+y^2\right)+\left(y^2-4yz+4z^2\right)+\left(z^2-2z+1\right)=0\)
<=> \(\left(x-y\right)^2+\left(y-2z\right)^2+\left(z-1\right)^2=0\)
LẬP LUẬN TƯƠNG TỰ NHƯ CÂU a ta cũng được:
DẤU "=" XẢY RA <=> \(\left(x-y\right)^2=\left(y-2z\right)^2=\left(z-1\right)^2=0\)
=> \(x=y=2;z=1\)
a) 9x2 - 8xy + 8y2 - 28x + 28 = 0
<=> ( 2x2 - 8xy + 8y2 ) + ( 7x2 - 28x + 28 ) = 0
<=> 2( x2 - 4xy + 4y2 ) + 7( x2 - 4x + 4 ) = 0
<=> 2( x - 2y )2 + 7( x - 2 )2 = 0
\(\hept{\begin{cases}2\left(x-2y\right)^2\ge0\forall x,y\\7\left(x-2\right)^2\ge0\forall x\end{cases}}\Rightarrow2\left(x-2y\right)^2+7\left(x-2\right)^2\ge0\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-2y=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
b) x2 + 2y2 + 5z2 + 1 = 2( xy + 2yz + z )
<=> x2 + 2y2 + 5z2 + 1 = 2xy + 4yz + 2z
<=> x2 + 2y2 + 5z2 + 1 - 2xy - 4yz - 2z = 0
<=> ( x2 - 2xy + y2 ) + ( y2 - 4yz + 4z2 ) + ( z2 - 2z + 1 ) = 0
<=> ( x - y )2 + ( y - 2z )2 + ( z - 1 )2 = 0
\(\hept{\begin{cases}\left(x-y\right)^2\\\left(y-2z\right)^2\\\left(z-1\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(x-y\right)^2+\left(y-2z\right)^2+\left(z-1\right)^2\ge0\forall x,y,z\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\y-2z=0\\z-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y=2\\z=1\end{cases}}\)