\(\frac{1}{\sqrt{x-\sqrt{2x+1}}}\)
tìm đkxđ
\(\frac{1}{\sqrt{x-\sqrt{2x+1}}}\)
Tìm ĐKXĐ và rút gọn:
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2'x-1'}{\sqrt{x}-1}\)
Rút gọn ta được:
\(P=\frac{x^1-\sqrt{x}}{x+\sqrt{x}+1}-\frac{1x+\sqrt{x}}{\sqrt{x}}+\frac{1'x-1'}{\sqrt{x}-1}\)
Phần \(\frac{2'x-1'}{\sqrt{x-1}}\) rút gọi được phần 2 thôi
Đề không yêu cầu Giải Phương trình nhé :v
P/s: Có chắc không nhỉ ?
1. Cho A= \(\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right):\frac{2\sqrt{x}-1}{\sqrt{x}-x}\)
a, Tìm ĐKXĐ và rút gọn.
b,Tìm x để A=\(\frac{2}{3}\).
c,Biểu thức A có GTLN không? Vì sao?
TÌM ĐKXĐ:
\(A=\frac{1}{\sqrt{x-\sqrt{2x-1}}}\)
\(B=\frac{\sqrt{16-x^2}}{\sqrt{2x+1}}+\sqrt{x^2-8x+14}\)
MONG CÁC BẠN TRẢ LỜI
1. Cho \(A=\sqrt{x+\sqrt{2x-1}}-\sqrt{x-\sqrt{2x-1}}\)
a) Tìm ĐK xác định của A
B) Rút gọn
2. Cho \(B=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\)
a)Tìm ĐKXĐ của B
b)Rút gọn
c)Tìm x để A<2
1.
a. ĐKXĐ : x lớn hơn hoặc bằng 1/2
b. A\(\sqrt{2}\)= \(\sqrt{2x+2\sqrt{2x-1}}-\sqrt{2x-2\sqrt{2x-1}}\)
= \(\sqrt{2x-1+1+2\sqrt{2x-1}}-\sqrt{2x-1+1-2\sqrt{2x-1}}\)
=\(\sqrt{\left(\sqrt{2x-1}+1\right)^2}-\sqrt{\left(\sqrt{2x-1}-1\right)^2}\)
= \(\sqrt{2x-1}+1-\left|\sqrt{2x-1}-1\right|\)
Nếu \(x\ge1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(\sqrt{2x-1}-1\right)=2\)
\(\Rightarrow A=2\)
Nếu 1/2 \(\le x< 1thìA\sqrt{2}=\sqrt{2x-1}+1-\left(1-\sqrt{2x-1}\right)=2\sqrt{2x-1}\)
Do đó : A= \(\sqrt{4x-2}\)
Vậy ............
2.
a. \(x\ge2\)hoặc x<0
b. A= \(2\sqrt{x^2-2x}\)
c. A<2 \(\Leftrightarrow\)\(2\sqrt{x^2-2x}< 2\Leftrightarrow\sqrt{x^2-2x}< 1\Leftrightarrow x^2-2x< 1\Leftrightarrow\left(x-1\right)^2< 2\)
\(-\sqrt{2}< x-1< \sqrt{2}\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
Kết hợp vs đk câu a , ta đc : \(1-\sqrt{2}< x< 0và2\le x< 1+\sqrt{2}\)
Vậy...........
\(\left(\frac{1}{\sqrt{x}-\sqrt{x-1}}-\frac{x-3}{\sqrt{x-1}-\sqrt{2}}\right)\left(\frac{2}{\sqrt{2}-\sqrt{x}}-\frac{\sqrt{x}+\sqrt{2}}{\sqrt{2x-x}}\right)\)
a. ĐKXĐ của x
b. Rút gọn
tìm điều kiện để các biểu thức sau có nghĩa ( tìm đkxđ)
1) \(\frac{1}{\sqrt{2x-1}}+\sqrt{5-x}\)
2) \(\sqrt{x-\frac{1}{x}}\)
3) \(\sqrt{2x-1}+\sqrt{4-x^2}\)
4) \(\sqrt{x^2-1}+\sqrt{9-x^2}\)
1) \(\frac{1}{\sqrt{2x-1}}\)có nghĩa khi \(\hept{\begin{cases}2x-1\ge0\\\sqrt{2x-1}\ne0\end{cases}}\)
\(\Leftrightarrow2x-1>0\)
\(\Leftrightarrow x>\frac{1}{2}\)
\(\sqrt{5-x}\)có nghĩa khi \(5-x\ge0\Leftrightarrow x\ge5\)
Vậy \(ĐKXĐ:\frac{1}{2}>x\ge5\)
2) \(\sqrt{x-\frac{1}{x}}\)có nghĩa khi \(\hept{\begin{cases}x-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2}{x}-\frac{1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x^2-1}{x}\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-1\ge0\\x>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2\ge1\\x>0\end{cases}}\)
Vậy \(ĐKXĐ:x\ge1\)
3) \(\sqrt{2x-1}\)có nghĩa khi \(2x-1\ge0\) \(\Leftrightarrow x\ge\frac{1}{2}\)
\(\sqrt{4-x^2}\)có nghĩa khi \(4-x^2\ge0\Leftrightarrow x^2\le4\Leftrightarrow x\le2\)
Vậy \(ĐKXĐ:\frac{1}{2}\le x\le2\)
4) \(\sqrt{x^2-1}\)có nghĩa khi \(x^2-1\ge0\Leftrightarrow x^2\ge1\Leftrightarrow x\ge1\)
\(\sqrt{9-x^2}\)có nghĩa khi \(9-x^2\ge0\Leftrightarrow x^2\le9\Leftrightarrow x\le3\)
Vậy \(ĐKXĐ:1\le x\le3\)
Tìm đkxđ của biểu thức \(\frac{\sqrt{x^2-1}}{\sqrt{x+1}}+\sqrt{\left(1-x\right)\left(2x+1\right)}\)
Điều kiện xác định là
\(\hept{\begin{cases}x^2-1\ge0\\x+1>0\\\left(1-x\right)\left(2x+1\right)\ge0\end{cases}}\)
=> x = 1
bạn làm lại giúp mình với thay \(\sqrt{x^2-1}=\sqrt{x^2-4}\)
Điều kiện xâc định
\(\hept{\begin{cases}x^2-4\ge0\\x+1>0\\\left(1-x\right)\left(2x+1\right)\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\le-2orx\ge2\\x>-1\\\frac{-1}{2}\le x\le1\end{cases}}\)
Tập xác định là tập rỗng
tìm đkxđ của \(\frac{1}{\sqrt{x-\sqrt{2x+1}}}\)
Tìm ĐKXĐ của các biểu thức sau:
\(a,\frac{2}{\sqrt{x^2-x+1}}\)
\(b,\frac{1}{\sqrt{x-\sqrt{2x-1}}}\)
\(a,\)\(\frac{2}{\sqrt{x^2-x+1}}\)
\(đkxđ\Leftrightarrow\hept{\begin{cases}x^2-x+1\ge0\\x^2-x+1\ne0\end{cases}\Rightarrow x^2-x+1>0}\)
Mà \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với \(\forall x\)
\(\Rightarrow\)Biểu thức luôn được xác định với mọi x