Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Tuấn Kiệt
Xem chi tiết
Nguễn Thanh Bình
12 tháng 10 lúc 20:30

Gọi \(s = sin ⁡ x , \textrm{ }\textrm{ } c = cos ⁡ x\). Vì \(x \in \left[\right. 0 , \pi / 4 \left]\right.\) nên \(c > 0\). Chia cả phương trình cho \(cos ⁡ x\) được (không làm mất nghiệm vì \(cos ⁡ x \neq 0\) trên đoạn này). Đặt \(t = tan ⁡ x = \frac{s}{c} \in \left[\right. 0 , 1 \left]\right.\). Sau khi biến đổi ta được:

\(\frac{1}{cos ⁡ x} \left[\right. \left(\right. 4 - 6 m \left.\right) s^{3} + 3 \left(\right. 2 m - 1 \left.\right) s + 2 \left(\right. m - 2 \left.\right) s^{2} c - \left(\right. 4 m - 3 \left.\right) c \left]\right. = 0\)

tương đương (sau tính toán và đưa về \(t\)):

\(\left(\right. t - 1 \left.\right) \left(\right. t^{2} - 2 m \textrm{ } t + 4 m - 3 \left.\right) = 0.\)

Vậy nghiệm ứng với \(t\) là:

\(t = 1 \left(\right. \Leftrightarrow x = \frac{\pi}{4} \left.\right) ,\)

hoặc \(t\) là nghiệm của đa thức bậc hai

\(q \left(\right. t \left.\right) = t^{2} - 2 m t + 4 m - 3 = 0.\)

Ta cần số nghiệm \(t \in \left[\right. 0 , 1 \left]\right.\). Lưu ý \(t = 1\) luôn là một nghiệm (tương ứng \(x = \pi / 4\)). Để phương trình chỉ có một nghiệm trên \(\left[\right. 0 , \pi / 4 \left]\right.\) tức là không có nghiệm \(t\) nào khác nằm trong \(\left[\right. 0 , 1 \left.\right)\). Do đó phải đảm bảo rằng phương trình \(q \left(\right. t \left.\right) = 0\) không có nghiệm trong đoạn \(\left[\right. 0 , 1 \left.\right)\).

Phân tích \(q \left(\right. t \left.\right)\):

Đặt \(D_{q} = 4 \left(\right. \left(\right. m - 1 \left.\right) \left(\right. m - 3 \left.\right) \left.\right)\). Nếu \(1 < m < 3\) thì \(D_{q} < 0\)\(q\) không có nghiệm thực → không có nghiệm trong \(\left[\right. 0 , 1 \left.\right)\) → duy nhất \(t = 1\).Nếu \(m \geq 3\) thì hai nghiệm của \(q\)\(m \pm \sqrt{\left(\right. m - 1 \left.\right) \left(\right. m - 3 \left.\right)}\); cả hai đều \(> 1\) (không rơi vào \(\left[\right. 0 , 1 \left.\right)\)) → chỉ \(t = 1\).Nếu \(m \leq 1\) thì \(q\) có nghiệm thực; xét riêng:Nếu \(m < \frac{3}{4}\) thì một nghiệm của \(q\) âm và nghiệm kia \(> 1\) → không có nghiệm trong \(\left[\right. 0 , 1 \left.\right)\) → chỉ \(t = 1\).Nếu \(m = \frac{3}{4}\) thì \(q \left(\right. 0 \left.\right) = 0\) (tức \(t = 0\) là nghiệm) → hai nghiệm trong \(\left[\right. 0 , \frac{\pi}{4} \left]\right.\): \(t = 0\)\(t = 1\)không thỏa yêu cầu “duy nhất”.Nếu \(\frac{3}{4} < m < 1\) thì \(q\) có đúng một nghiệm nằm trong \(\left(\right. 0 , 1 \left.\right)\) → cộng với \(t = 1\) ta có ít nhất hai nghiệm → không thỏa.Nếu \(m = 1\) thì \(q \left(\right. t \left.\right) = \left(\right. t - 1 \left.\right)^{2}\) và duy nhất nghiệm trong đoạn là \(t = 1\) (bội) → vẫn một nghiệm.

Kết luận: phương trình có đúng một nghiệm \(x \in \left[\right. 0 , \pi / 4 \left]\right.\) khi và chỉ khi

\(\boxed{\textrm{ } m < \frac{3}{4} \text{ho}ặ\text{c} m \geq 1. \textrm{ }}\)

(Nói ngắn: tất cả \(m\) ngoại trừ đoạn \(\left[\right. \frac{3}{4} , 1 \left.\right)\); điểm \(m = \frac{3}{4}\) bị loại vì lúc đó có thêm nghiệm \(x = 0\).)

Nguyễn Tuấn
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 12 2020 lúc 13:22

\(\Leftrightarrow2\left(cos^2x-sin^2x\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left(2cosx-2sinx\right)\left(sinx+cosx\right)+sinx.cosx\left(sinx+cosx\right)=m\left(sinx+cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+cosx=0\left(\text{vô nghiệm trên đoạn xét}\right)\\2cosx-2sinx+sinx.cosx=m\left(1\right)\end{matrix}\right.\) 

Xét (1), đặt \(t=cosx-sinx=\sqrt{2}cos\left(x+\dfrac{\pi}{4}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}t\in\left[-1;1\right]\\sinx.cosx=\dfrac{1-t^2}{2}\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2t+\dfrac{1-t^2}{2}=m\)

Xét hàm \(f\left(t\right)=-\dfrac{1}{2}t^2+2t+\dfrac{1}{2}\) trên \(\left[-1;1\right]\)

\(-\dfrac{b}{2a}=2\notin\left[-1;1\right]\) ; \(f\left(-1\right)=-2\) ; \(f\left(1\right)=2\)

\(\Rightarrow-2\le f\left(t\right)\le2\Rightarrow-2\le m\le2\)

Phạm Tuấn Kiệt
Xem chi tiết
Truong
21 tháng 9 lúc 20:24

Ko bít nữa.

nguyễn minh
Xem chi tiết
nguyễn minh
Xem chi tiết
hạ băng
Xem chi tiết
Nguyễn Hoàng Long
Xem chi tiết
camcon
Xem chi tiết
Nguyễn Linh Chi
Xem chi tiết