Tìm GTLN của :
\(Q=\sqrt{x-5}+\sqrt{23-x}\)
Tìm GTLN của B=\(\sqrt{x-5}+\sqrt{23-x}\)
Cách 1 : Áp dụng bất đẳng thức Bunhiacopxki , ta có :
\(B^2=\left(1.\sqrt{x-5}+1.\sqrt{23-x}\right)^2\le\left(1^2+1^2\right)\left(x-5+23-x\right)=36\)
\(\Rightarrow B^2\le36\Rightarrow B\le6\) . Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}5\le x\le23\\\sqrt{x-5}=\sqrt{23-x}\end{cases}\) \(\Leftrightarrow x=14\)
Vậy giá trị lớn nhất của B bằng 6 khi và chỉ khi x = 14
Cách 2 : Ta có : \(B^2=\left(\sqrt{x-5}+\sqrt{23-x}\right)^2=18+2\sqrt{x-5}.\sqrt{23-x}\)
Áp dụng bất đẳng thức Cauchy, ta có : \(2\sqrt{x-5}.\sqrt{23-x}\le x-5+23-x=18\)
\(\Rightarrow B^2\le18+18=36\Rightarrow B\le6\) . Dấu "=" xảy ra khi và chỉ khi \(\begin{cases}5\le x\le23\\x-5=23-x\end{cases}\) \(\Leftrightarrow x=14\)
Vậy B đạt giá trị lớn nhất bằng 6 khi và chỉ khi x = 14
Tìm GTLN của B=\(\sqrt{x-5}+\sqrt{23-x}\)
Tìm GTLN của
a) \(A=\sqrt{3x-5}+\sqrt{7-3x}\)
b)\(B=\sqrt{x-5}+\sqrt{23-x}\)
c)\(C=x+\sqrt{2-x}\)
d)\(D=x\sqrt{1-x^2}\)
\(A\le\sqrt{2\left(3x-5+7-3x\right)}=\sqrt{2.2}=2\)
\(A_{max}=2\) khi \(x=2\)
\(B\le\sqrt{2\left(x-5+23-x\right)}=\sqrt{2.18}=6\)
\(B_{max}=6\) khi \(x=14\)
\(C=-\left(2-x\right)+\sqrt{2-x}+2=-\left(\sqrt{2-x}-\frac{1}{4}\right)^2+\frac{17}{8}\le\frac{17}{8}\)
\(C_{max}=\frac{17}{8}\) khi \(x=\frac{31}{16}\)
\(D\le\frac{1}{2}\left(x^2+1-x^2\right)=\frac{1}{2}\)
\(D_{max}=\frac{1}{2}\) khi \(x=\frac{\sqrt{2}}{2}\)
Bài 1: Tìm GTNN và GTLN của \(A=123+\sqrt{-x^2+6x+5}\)
Bài 2:Tìm GTNN và GTLN của \(A=\sqrt{-x^2+8x-12}-7\)
Bài 3: Tìm GTNN và GTLN của \(A=\sqrt{-x^2-x+4}\)
1tìm x để \(\frac{2-5\sqrt{x}}{\sqrt{x}+3}=\frac{-8\sqrt{x}+5}{3\sqrt{x}+1}\)
2 tìm GTLN của P=\(\frac{2-5\sqrt{x}}{\sqrt{x}+3}\)
2/ \(P=\frac{2-5\sqrt{x}}{\sqrt{x}+3}=-5+\frac{17}{\sqrt{x}+3}\)
Ta thấy rằng mẫu là số dương nên để P lớn nhất thì mẫu bé nhất hay x = 0
\(P=\frac{2}{3}\)
1/ Đặt \(\sqrt{x}=a\:voi\:a\ge0\) thì pt thành
\(\frac{2-5a}{a+3}=\frac{5-8a}{3a+1}\)
\(\Leftrightarrow7a^2-20a+13=0\)
<=> (a - 1)(7a - 13) = 0
Giải tiếp câu 1/
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{13}{7}\end{cases}}\)
Tìm gtln của A =\(\sqrt{13-x}+\sqrt{x-5}\)
\(A^2=\left(13-x\right)+\left(x-5\right)+2\sqrt{\left(13-x\right)\left(x-5\right)}\)
\(=8+2\sqrt{\left(13-x\right)\left(x-5\right)}\)(Dùng Bđt Cauchy)
\(\le8+\left(13-x\right)+\left(x-5\right)\)
\(=8+8=16\)
\(\Rightarrow A^2\le16\Leftrightarrow A\le4\)
Dấu = khi \(\sqrt{13-x}=\sqrt{x-5}\Leftrightarrow x=9\)
Vậy MaxA=4 khi x=9
\(A>0;A^2=\left(\sqrt{13-x}+\sqrt{x-5}\right)^2\le\left(1^2+1^2\right)\left(\sqrt{13-x}^2+\sqrt{x-5}^2\right)=2\left(13-x+x-5\right)=16.\)
0<A</ 4 => Max A = 4 khi 13-x = x -5 => x = 9
tìm GTLN của biểu thức:\(P=\sqrt{x-5}+\sqrt{7-x}\)
ta có
\(\sqrt{\left(x-5\right).1}\le\frac{x-5+1}{2}=\frac{x-4}{2}\)
\(\sqrt{\left(7-x\right).1}\le\frac{7-x+1}{2}=\frac{-x+8}{2}\)
\(\Rightarrow P\ge\frac{x-4}{2}+\frac{8-x}{2}=2\)
Dấu = xảy ra <=> \(\hept{\begin{cases}x-5=1\\7-x=1\end{cases}\Leftrightarrow x=6}\)
vậy min P=2 khi x=6
Tìm GTNN của \(\sqrt{x^2-x+\frac{13}{2}}+\sqrt{x^2-3x+\frac{5}{2}}\)
Tìm GTLN của B=7x-y khi x^2+y^2=2
Cho \(C=\frac{4\sqrt{x}-7}{x+\sqrt{x}-2}+\frac{2-\sqrt{x}}{\sqrt{x}-1}-\frac{1+2\sqrt{x}}{\sqrt{x}+2}\)
a> Tìm x để C= 1/2
B> Tìm x thuộc Z sao cho C nhận giá trị nguyên
C> Tìm GTLN của C
tìm GTNN VÀ GTLN của \(x\sqrt{5-x}+< 3-x>\sqrt{2+x}\)